Skip to main content

Phylogeny

  • Chapter
  • First Online:
  • 3345 Accesses

Part of the book series: Computational Biology ((COBO,volume 17))

Abstract

DNA replications generate phylogenies. Therefore, phylogenetic relationship of DNAs is fundamental for those of individuals, genes, and species. Their relationships and differences are discussed as well as the biologically important concepts such as gene genealogy, paralogy, orthology, and horizontal gene transfer. Basic concepts of trees and networks are then explained including mathematical definition, number of possible tree topologies, and description of trees and networks. Biological implications of trees and networks such as fission and fusion of species and populations and the relationship with taxonomy are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Darwin, C. (1859). On the origin of species. London: John Murray.

    Google Scholar 

  2. Deppe, U., et al. (1978). Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 75, 376–380.

    Article  Google Scholar 

  3. Saitou, N. (1995). A genetic affinity analysis of human populations. Human Evolution, 10, 17–33.

    Article  Google Scholar 

  4. Ahn, S. M., et al. (2011). Genome Research, 16, 1622–1629.

    Google Scholar 

  5. International HapMap Project Home Page: http://hapmap.ncbi.nlm.nih.gov/

  6. Hansen, A. K., et al. (2007). American Journal of Botany, 94, 42–46.

    Article  Google Scholar 

  7. Saitou, N. (2004). “Genomu to Shinka” (in Japanese, meaning ‘Genome and evolution’ in English). Tokyo: Shin-yosha.

    Google Scholar 

  8. Ingman, M., Kaessman, H., Paabo, S., & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408, 708–713.

    Article  Google Scholar 

  9. Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.

    Article  Google Scholar 

  10. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  11. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford/New York: Oxford University Press.

    Google Scholar 

  12. Hedges, S. B., Dodley, J., & Kumar, S. (2006). TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics, 22, 2971–2972.

    Article  Google Scholar 

  13. Kitano, T., Satou, M., & Saitou, N. (2010). Evolution of two Rh blood group-related genes of the amphioxus species Branchiostoma floridae. Genes & Genetic Systems, 85, 121–127.

    Article  Google Scholar 

  14. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular and Biological Evolution, 4, 406–425.

    Google Scholar 

  15. Takezaki, N., Rzhetsky, A., & Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Molecular and Biological Evolution, 12, 823–833.

    Google Scholar 

  16. Ezawa, K., Ikeo, K., Gojobori, T., & Saitou, N. (2011). Evolutionary patterns of recently emerged animal duplogs. Genome Biology and Evolution, 3, 1119–1135.

    Google Scholar 

  17. Fitch, W. M. (1970). Distinguishing homologous from analogous proteins. Systematic Zoology, 19, 99–113.

    Article  Google Scholar 

  18. Wolfe, K. (2000). Robustness – It’s not where you think it is. Nature Genetics, 25, 3–4.

    Article  Google Scholar 

  19. Sonnhammer, E. L. L., & Koonin, E. V. (2002). Orthology, paralogy, and proposed classification for paralog subtypes. Trends in Genetics, 18, 619–620.

    Article  Google Scholar 

  20. Kawamura, S., Saitou, N., & Ueda, S. (1992). Concerted evolution of the primate immunoglobulin alpha gene through gene conversion. Journal of Biological Chemistry, 267(11), 7359–7367.

    Google Scholar 

  21. Kitano, T., Sumiyama, K., Shiroishi, T., & Saitou, N. (1998). Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochemical and Biophysical Research Communications, 249, 78–85.

    Article  Google Scholar 

  22. Kitano, T., & Saitou, N. (1999). Evolution of Rh blood group genes have experienced gene conversions and positive selection. Journal of Molecular Evolution, 49, 615–626.

    Article  Google Scholar 

  23. Koonin, E. V., Makarova, K. S., & Aravind, L. (2001). Horizontal gene transfer in prokaryotes: Quantification and classification. Annual Review of Microbiology, 55, 709–742.

    Article  Google Scholar 

  24. Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringe pathovar suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.

    Article  Google Scholar 

  25. Nakamura, Y., Itoh, T., Matsuda, H., & Gojobori, T. (2004). Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics, 36, 760–766.

    Article  Google Scholar 

  26. Archibald, J. M., & Richards, T. A. (2011). Gene transfer: Anything goes in plant mitochondria. BMC Biology, 8, 147.

    Article  Google Scholar 

  27. Dehal P. et al. (2002). The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins. Science, 298, 2157–2167.

    Google Scholar 

  28. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    Article  Google Scholar 

  29. Kryukov, K., & Saitou, N. (2010). MISHIMA – A new method for high speed multiple alignment of nucleotide sequences of bacterial genome scale data. BMC Bioinformatics, 11, 142.

    Article  Google Scholar 

  30. Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.

    Article  Google Scholar 

  31. Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24, 189–204.

    Article  Google Scholar 

  32. Kitano, T., Liu, Y.-H., Ueda, S., & Saitou, N. (2004). Human specific amino acid changes found in 103 protein coding genes. Molecular Biology and Evolution, 21, 936–944.

    Article  Google Scholar 

  33. Dress, A., Huber, K. T., Koolen, J., Moulton, V., & Spillner, A. (2011). Basic phylogenetic combinatorics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  34. Cavalli-Sforza, L. L., & Edwards, A. (1967). Phylogenetic analysis. Models and estimation procedures. American Journal of Human Genetics, 19, 233–257.

    Google Scholar 

  35. Felsenstein, J. (1978). The number of evolutionary trees. Systematic Zoology, 27, 27–33.

    Article  Google Scholar 

  36. Courant, R., Robbins, H., & Stewart, I. (1996). What is mathematics? Oxford: Oxford University Press.

    Google Scholar 

  37. http://evolution.genetics.washington.edu/phylip/newicktree.html

  38. Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53, 131–147.

    Article  MATH  MathSciNet  Google Scholar 

  39. Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transaction of Royal Society of London Series B, 213, 21–87.

    Article  Google Scholar 

  40. Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S., & Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441, 1103–1108.

    Article  Google Scholar 

  41. Sarich, V. M., & Wilson, A. C. (1967). Immunological time scale for hominoid evolution. Science, 158, 1200–1204.

    Article  Google Scholar 

  42. Saitou, N. (2005). Evolution of hominoids and the search for a genetic basis for creating humanness. Cytogenetic and Genome Research, 108, 16–21.

    Article  Google Scholar 

  43. Huxley, J. (1958). Evolutionary process and taxonomy with special reference to grades (pp. 21–38). Uppsala: Uppsala University Arsskr.

    Google Scholar 

  44. Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press.

    Google Scholar 

  45. Wikipedia on Willi Henning: http://en.wikipedia.org/wiki/Willi_Hennig

  46. Saitou, N. (2007b). Genomu Shinkagaku Nyumon (written in Japanese, meaning ‘Introduction to evolutionary genomics’). Tokyo: Kyoritsu Shuppan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Saitou, N. (2013). Phylogeny. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, London. https://doi.org/10.1007/978-1-4471-5304-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5304-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5303-0

  • Online ISBN: 978-1-4471-5304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics