Skip to main content

Genome Sequencing

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 3339 Accesses

Abstract

The wet experimental steps are necessary for sequencing genomes. These steps are summarized in this chapter, starting from DNA sampling, followed by construction of genomic library and sequence determination. Computational tactics on determination of nucleotide sequences including base call, shotgun sequencing, minimum tiling array, haplotype sequence determination, and resequencing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimada, M., Hayakawa, S., Hamle, T., Fujita, S., Hirata, S., Sugiyama, Y., & Saitou, N. (2004). Mitochondrial DNA genealogy of chimpanzees in Nimba mountains and Bossou, West Africa. American Journal of Primatology, 64, 261–275.

    Article  Google Scholar 

  2. Levy, S., et al. (2007). The diploid genome sequence of an individual human. PLoS Biology, 5, e254.

    Article  Google Scholar 

  3. Bentley, D. R., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59.

    Article  Google Scholar 

  4. Ahn, S. M., et al. (2009). The first Korean genome sequence and analysis: Full genome sequencing for a socio-ethnic group. Genome Research, 19, 1622–1629.

    Article  Google Scholar 

  5. Dessauer H. C., Cole H. J., & Hafner, M. S. (1996). Chapter 3. Collection and storage of tissues. In D. M. Hillis, C. Moritz, & B. K. Marble (eds.), Molecular systematics, (2nd edn., pp. 29–47). Sunderland: Sinauer Associates.

    Google Scholar 

  6. Rohland, N., & Hofreiter, M. (2007). Comparison and optimization of ancient DNA extraction. BioTechniques, 42, 343–352.

    Article  Google Scholar 

  7. Kanzawa, H., Saso, A., Suwa G., & Saitou, N. (2013). Ancient mitochondrial DNA sequences of Jomon teeth samples from Sanganji, Tohoku district, Japan. Anthological Science (in press)

    Google Scholar 

  8. Sambrook, J., Fritisch, E. F., & Maniates, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  9. http://www.protocol-online.org/prot/Molecular_Biology/DNA/DNA_Extraction___Purification/index.html)

  10. Chomczynski, R., & Sacchi, N. (1987). Single-step method of RNA extraction by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.

    Article  Google Scholar 

  11. Roe, B. A., Crabtree, J. S., & Khan, A. S. (eds.). (1995). Protocols for recombinant DNA isolation, cloning, and sequencing. III. Methods for DNA isolation. http://www.genome.ou.edu/protocol_book/protocol_partIII.html#III.H

  12. Liu, Y.-H., Takahashi, A., Kitano, T., Koide, T., Shiroishi, T., Moriwaki, K., & Saitou, N. (2008). Mosaic genealogy of the Mus musculus genome revealed by 21 nuclear genes from its three subspecies. Genes and Genetic Systems, 83, 77–88.

    Article  Google Scholar 

  13. Brown, T. A. (2007). Genomes 3. New York: Garland Science Publishing.

    Google Scholar 

  14. http://bacpac.chori.org/

  15. Kim, C.-G., Fujiyama, A., & Saitou, N. (2003). Construction of a gorilla fosmid library and its PCR screening system. Genomics, 82, 571–574.

    Article  Google Scholar 

  16. Osoegawa, K., & de Jong, P. J. (2004). BAC library construction. Methods in molecular biology, 255, 1–46.

    Google Scholar 

  17. Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74, 560–564.

    Article  Google Scholar 

  18. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.

    Article  Google Scholar 

  19. http://www.nature.com/app_notes/nmeth/2005/050929/full/nmeth800.html

  20. Shimada, M., Kim, C.-G., Takahashi, A., Saitou, N., Ikeo, K., Gojobori, T., & Spitsyn, V. A. (2002). Mitochondrial DNA control region sequences for a Buryats population in Russia (in Japanese). DNA Takei, 10, 151–155.

    Google Scholar 

  21. http://www.454.com/

  22. http://www.iontorrent.com/technology-scalability-simplicity-speed/

  23. http://www.illumina.com/technology/solexa_technology.ilmn

  24. http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html

  25. Pushkarev, D., Neff, N. F., & Quake, S. R. (2009). Single-molecule sequencing of an individual human genome. Nature Biotechnology, 27, 847–850.

    Article  Google Scholar 

  26. http://www.iontorrent.com/

  27. Nagayama, K. (2011). Another 60 years in electron microscopy: Development of phase-plate electron microscopy and biological applications. Journal of Electron Microscopy, 60, S43–S62.

    Article  Google Scholar 

  28. Maglia, G., Restrepo, M. R., Mikhailova, E., & Bayley, H. (2008). Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge. Proceedings of the National Academy of Sciences of the United States of America, 105, 19720–19725.

    Article  Google Scholar 

  29. http://www.nanoporetech.com/

  30. Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Research, 8, 175–185.

    Article  Google Scholar 

  31. Ewing, B., & Green, P. (1998). Basecalling of automated sequencer traces using Phred. II. Error probabilities. Genome Research, 8, 186–194.

    Article  Google Scholar 

  32. http://www.phrap.org/phredphrapconsed.html

  33. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., & Roe, B. A. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology, 143, 161–178.

    Article  Google Scholar 

  34. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L.-I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O., & Venter, J. C. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512.

    Article  Google Scholar 

  35. Ezawa, K., Ikeo, K., Gojobori, T., & Saitou, N. (2011). Evolutionary patterns of recently emerged animal duplogs. Genome Biology and Evolution, 3, 1119–1135.

    Article  Google Scholar 

  36. Innis, M. A., Myambo, K. B., Gelfand, D. H., & Brow, M. A. (1988). DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proceedings of the National Academy of Sciences of the United States of America, 85, 9436–9440.

    Article  Google Scholar 

  37. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  38. Krzywinski, M., et al. (2004). A set of BAC clones spanning the human genome. Nucleic Acids Research, 32, 3651–3660.

    Article  Google Scholar 

  39. The International Chimpanzee Chromosome 22 Consortium. (2004). DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature, 429, 382–388.

    Article  Google Scholar 

  40. Fujiyama, A., Watanabe, H., Toyoda, A., Taylor, T. D., Itoh, T., Tsai, S.-F., Park, H.-S., Yaspo, M.-L., Lehrach, H., Chen, Z., Fu, G., Saitou, N., Osoegawa, K., de Jong, P. J., Suto, Y., Hattori, M., & Sakaki, Y. (2002). Construction and analysis of a human-chimpanzee comparative clone map. Science, 295, 131–134.

    Article  Google Scholar 

  41. The Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.

    Article  Google Scholar 

  42. Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.

    Article  Google Scholar 

  43. International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  Google Scholar 

  44. International HapMap Consortium. (2005). The haplotype map of the human genome. Nature, 437, 1299–1320.

    Article  Google Scholar 

  45. The 1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Saitou, N. (2013). Genome Sequencing. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, London. https://doi.org/10.1007/978-1-4471-5304-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5304-7_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5303-0

  • Online ISBN: 978-1-4471-5304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics