Skip to main content

A Semantics-Based, End-User-Centered Information Visualization Process for Semantic Web Data

  • Chapter
Semantic Models for Adaptive Interactive Systems

Abstract

Understanding and interpreting Semantic Web data is almost impossible for novices as skills in Semantic Web technologies are required. Thus, Information Visualization (InfoVis) of this data has become a key enabler to address this problem. However, convenient solutions are missing as existing tools either do not support Semantic Web data or require users to have programming and visualization skills. In this chapter, we propose a novel approach towards a generic InfoVis workbench called VizBoard, which enables users to visualize arbitrary Semantic Web data without expert skills in Semantic Web technologies, programming, and visualization. More precisely, we define a semantics-based, user-centered InfoVis workflow and present a corresponding workbench architecture based on the mashup paradigm, which actively supports novices in gaining insights from Semantic Web data, thus proving the practicability and validity of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As of February 2013, the Data Hub (http://thedatahub.org/) hosts about 5100 data sets from various domains.

  2. 2.

    http://www.tableausoftware.com/.

  3. 3.

    http://data-gov.tw.rpi.edu/wiki/How_to_use_Google_Visualization_API.

  4. 4.

    http://uispin.org/charts.html.

  5. 5.

    http://www.topbraidcomposer.com.

  6. 6.

    GoodRelations ontology: http://purl.org/goodrelations/v1.

  7. 7.

    DBPedia: http://dbpedia.org/About.

  8. 8.

    WordNet: http://wordnet.princeton.edu/.

  9. 9.

    http://ncicb.nci.nih.gov/download/evsportal.jsp.

  10. 10.

    Information based on the State of the LOD Cloud report from October 2011, http://www4.wiwiss.fu-berlin.de/lodcloud/state/.

  11. 11.

    TopBraid Composer: http://www.topquadrant.com/products/TB_Composer.html.

  12. 12.

    http://jersey.java.net/.

  13. 13.

    http://jena.apache.org/documentation/tdb/.

  14. 14.

    http://poi.apache.org/.

  15. 15.

    http://d2rq.org/.

  16. 16.

    http://jgrapht.org/.

  17. 17.

    http://sourceforge.net/projects/kce/.

  18. 18.

    http://rapid-i.com/.

  19. 19.

    https://github.com/mbostock/d3.

  20. 20.

    http://jquery.com/.

  21. 21.

    http://raphaeljs.com/.

References

  • Boukhelifa, N., Roberts, J. C., & Rodgers, P. J. (2003). A coordination model for exploratory multiview visualization. In Coordinated and multiple views in exploratory visualization (pp. 76–85).

    Google Scholar 

  • Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163–177. doi:10.1080/0022250X.2001.9990249.

    Article  MATH  Google Scholar 

  • Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization: using vision to think. San Francisco: Morgan Kaufmann. ISBN: 1558605339.

    Google Scholar 

  • Chen, M., Ebert, D., Hagen, H., Laramee, R. S., van Liere, R., Ma, K.-L., et al.(2009). Data, information, and knowledge in visualization. IEEE Computer Graphics and Applications, 29(1), 12–19. doi:10.1109/MCG.2009.6.

    Article  Google Scholar 

  • Cleveland, W. S., & McGill, R. (1984). Graphical perception: theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554.

    Article  MathSciNet  Google Scholar 

  • Dadzie, A.-S., & Rowe, M. (2011). Approaches to visualising linked data: a survey. Semantic Web, 2(1), 89–124. doi:10.3233/SW-2011-0037.

    Google Scholar 

  • Ding, L., DiFranzo, D., Graves, A., Michaelis, J., Li, X., McGuinness, D. L., & Hendler, J. A. (2010). TWC data-gov corpus: incrementally generating linked government data from data.gov. In WWW’10 (pp. 1383–1386). doi:10.1145/1772690.1772937.

    Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34. doi:10.1145/240455.240464.

    Article  Google Scholar 

  • Glimm, B., Hogan, A., Krötzsch, M., & Polleres, A. (2012). Owl: yet to arrive on the web of data? In Linked data on the web (LDOW2012).

    Google Scholar 

  • Grammel, L., Tory, M., & Storey, M.-A. (2010). How information visualization novices construct visualizations. IEEE Transactions on Visualization and Computer Graphics, 16, 943–952.

    Article  Google Scholar 

  • Haber, R., & McNabb, D. A. (1990). Visualization idioms: a conceptual model for scientific visualization systems. In Visualization in scientific computing (pp. 74–93).

    Google Scholar 

  • Hearst, M. A. (2009). Search user interfaces. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Heer, J., van Ham, F., Carpendale, S., Weaver, C., & Isenberg, P. (2008). Creation and collaboration: engaging new audiences for information visualization (pp. 92–133). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-70956-5_5.

    Google Scholar 

  • Kadlec, B. J., Tufo, H. M., & Dorn, G. A. (2010). Knowledge-assisted visualization and segmentation of geologic features. IEEE Computer Graphics and Applications, 30(1), 30–39. doi:10.1109/MCG.2010.13.

    Article  Google Scholar 

  • Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., & Giannopoulou, E. (2007). Ontology visualization methods—a survey. ACM Computing Surveys, 39(4), 10. doi:10.1145/1287620.1287621.

    Article  Google Scholar 

  • Leida, M., Afzal, A., & Majeed, B. (2010). Outlines for dynamic visualization of semantic web data. In LNCS: Vol6428. On the move to meaningful internet systems: OTM 2010 workshops (pp. 170–179). Berlin: Springer.

    Chapter  Google Scholar 

  • Mazumdar, S., Petrelli, D., & Ciravegna, F. (2012). Exploring user and system requirements of linked data visualization through a visual dashboard approach. Semantic Web Journal. doi:10.3233/SW-2012-0072.

    Google Scholar 

  • Peroni, S., Motta, E., & d’Aquin, M. (2008). Identifying key concepts in an ontology, through the integration of cognitive principles with statistical and topological measures. In LNCS: Vol5367. The semantic web (pp. 242–256). Berlin: Springer.

    Chapter  Google Scholar 

  • Pietschmann, S. (2009). A model-driven development process and runtime platform for adaptive composite web applications. International Journal on Advances in Internet Technology, 4(1), 277–288.

    Google Scholar 

  • Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., & Meißner, K. (2010). A metamodel for context-aware component-based mashup applications. In Proc. of the 12th int. conf. on information integration and web-based applications & services.

    Google Scholar 

  • Popov, I., Schraefel, M., Hall, W., & Shadbolt, N. (2011). Connecting the dots: a multi-pivot approach to data exploration. In International semantic web conference.

    Google Scholar 

  • Potoniec, J., & Ławrynowicz, A. (2011). RMonto: ontological extension to RapidMiner. In 10th international semantic web conference (ISWC2011).

    Google Scholar 

  • Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, Jr. T., Auer, S., et al. (2009). A survey of current approaches for mapping of relational databases to RDF. W3C RDB2RDF Incubator Group.

    Google Scholar 

  • Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visualizations. In Proc. of IEEE symp. on visual languages (pp. 336–343). doi:10.1109/VL.1996.545307.

    Google Scholar 

  • Sicilia, M. A., Rodríguez, D., García-Barriocanal, E., & Sánchez-Alonso, S. (2012). Empirical findings on ontology metrics. Expert Systems with Applications, 39(8), 6706–6711. doi:10.1016/j.eswa.2011.11.094.

    Article  Google Scholar 

  • Tietz, V., Blichmann, G., Pietschmann, S., & Meißner, K. (2011). Task-based recommendation of mashup components. In Proc. of the 3rd intern. workshop on lightweight integration on the web (ComposableWeb 2011). Berlin: Springer.

    Google Scholar 

  • van Wijk, J. J. (2005). The value of visualization. In Proceedings of IEEE visualization (pp. 79–86). doi:10.1.1.75.6547.

    Google Scholar 

  • Voigt, M., & Polowinski, J. (2011). Towards a unifying visualization ontology (Tech. Report No. TUD-FI11-01). Dresden, Germany, TU Dresden. ISSN: 1430-211X.

    Google Scholar 

  • Voigt, M., Pietschmann, S., Grammel, L., & Meißner, K. (2012a). Context-aware recommendation of visualization components. In Proc. of the 4th intern. conf. on information, process, and knowledge management (eKNOW 2012).

    Google Scholar 

  • Voigt, M., Werstler, A., Polowinski, J., & Meißner, K. (2012b). Weighted faceted browsing for characteristics-based visualization selection through end users. In Proc. of the 4th symp. on engineering interactive computing systems, Copenhagen, Denmark (pp. 151–156). doi:10.1145/2305484.2305509.

    Google Scholar 

  • Voigt, M., Mitschick, A., & Schulz, J. (2012c). Yet another triple store benchmark? Practical experiences with real-world data. In Proc. of. the 2nd intern. workshop on semantic digital archives (SDA).

    Google Scholar 

  • Voigt, M., Pietschmann, S., Meißner, K. (2012d). Towards a semantics-based, end-user-centered information visualization process. In Proc. of the 3rd international workshop on semantic models for adaptive interactive systems (SEMAIS 2012).

    Google Scholar 

  • Wang, X., Jeong, D. H., Dou, W., Lee, S.-W., Ribarsky, W., & Chang, R. (2009). Defining and applying knowledge conversion processes to a visual analytics system. Computers & Graphics, 33(5), 616–623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Voigt, M., Pietschmann, S., Meißner, K. (2013). A Semantics-Based, End-User-Centered Information Visualization Process for Semantic Web Data. In: Hussein, T., Paulheim, H., Lukosch, S., Ziegler, J., Calvary, G. (eds) Semantic Models for Adaptive Interactive Systems. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-4471-5301-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5301-6_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5300-9

  • Online ISBN: 978-1-4471-5301-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics