Skip to main content

Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later

  • Chapter
Models and Algorithms for Genome Evolution

Part of the book series: Computational Biology ((COBO,volume 19))

Abstract

The evolution of genomes can be studied at least three different scales: the nucleotide level, accounting for substitutions and indels, the gene level, accounting for gains and losses, and the genome level, accounting for rearrangements of chromosome organization. While the nucleotide and gene levels are now often integrated in a single model using reconciled gene trees, very little work integrates the genome level as well, and considers gene trees and gene orders simultaneously. In a seminal book chapter published in 2000 and entitled “Duplication, Rearrangement and Reconciliation”, Sankoff and El-Mabrouk outlined a general approach, making a step in that direction. This avenue has been poorly exploited by the community for over ten years, but recent developments allow the design of integrated methods where phylogeny informs the study of synteny and vice versa. We review these developments and show how this influence of synteny on gene tree construction can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graur, D., Li, W.H.: Fundamentals of Molecular Evolution, 2nd edn. Sinauer Associates, Sunderland (2000)

    Google Scholar 

  2. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0. Syst. Biol. 59(3), 307–321 (2010)

    Article  Google Scholar 

  3. Csurös, M.: Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26(15), 1910–1912 (2010)

    Article  Google Scholar 

  4. Szöllosi, G.J., Boussau, B., Abby, S.S., Tannier, E., Daubin, V.: Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl. Acad. Sci. USA 109(43), 17513–17518 (2012)

    Article  Google Scholar 

  5. Boussau, B., Szöllosi, G.J., Duret, L., Gouy, M., Tannier, E., Daubin, V.: Genome-scale coestimation of species and gene trees. Genome Res. 23(2), 323–330 (2013)

    Article  Google Scholar 

  6. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)

    Article  Google Scholar 

  7. Zheng, C.: Pathgroups, a dynamic data structure for genome reconstruction problems. Bioinformatics 26(13), 1587–1594 (2010)

    Article  Google Scholar 

  8. Tang, J., Moret, B.M.E.: Scaling up accurate phylogenetic reconstruction from gene-order data. Bioinformatics 19(Suppl 1), i305–i312 (2003)

    Article  Google Scholar 

  9. Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Pacific Symposium on Biocomputing (2013)

    Google Scholar 

  10. Zuckerkandl, E., Pauling, L.: Molecules as documents of evolutionary history. J. Theor. Biol. 8(2), 357–366 (1965)

    Article  Google Scholar 

  11. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22, 448–450 (1936)

    Article  Google Scholar 

  12. Sturtevant, A., Novitski, E.: The homologies of chromosome elements in the genus drosophila. Genetics 26, 517–541 (1941)

    Google Scholar 

  13. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  14. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  15. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion problem. J. Theor. Biol. 99, 1–7 (1982)

    Article  Google Scholar 

  16. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89(14), 6575–6579 (1992)

    Article  Google Scholar 

  17. Sankoff, D.: Edit distances for genome comparisons based on non-local operations. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) Proceedings: Combinatorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, 29 April–1 May 1992. Lecture Notes in Computer Science, vol. 644, pp. 121–135. Springer, Berlin (1992)

    Chapter  Google Scholar 

  18. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  19. Boussau, B., Daubin, V.: Genomes as documents of evolutionary history. Trends Ecol. Evol. 25(4), 224–232 (2010)

    Article  Google Scholar 

  20. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  Google Scholar 

  21. Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2006)

    Article  MathSciNet  Google Scholar 

  22. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. USA 106(14), 5714–5719 (2009)

    Article  Google Scholar 

  23. Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2011)

    Article  Google Scholar 

  24. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012)

    Article  Google Scholar 

  25. Szöllosi, G.J., Rosikiewicz, W., Bousseau, B., Tannier, E., Daubin, V.: Efficient exploration of the space of reconciled gene trees. Syst. Biol. (2013). doi:10.1093/sysbio/syt054

    Google Scholar 

  26. Pevzner, P.A., Tesler, G.: Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003)

    Article  Google Scholar 

  27. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  28. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLoS Comput. Biol. 4(11), e1000234 (2008)

    Article  MathSciNet  Google Scholar 

  29. Chauve, C., Gavranovic, H., Ouangraoua, A., Tannier, E.: Yeast ancestral genome reconstructions: the possibilities of computational methods ii. J. Comput. Biol. 17(9), 1097–1112 (2010)

    Article  MathSciNet  Google Scholar 

  30. Jones, B.R., Rajaraman, A., Tannier, E., Chauve, C.: Anges: reconstructing ancestral genomes maps. Bioinformatics 28(18), 2388–2390 (2012)

    Article  Google Scholar 

  31. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. In: Thomson Leighton, F., Borodin, A. (eds.) Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, Las Vegas, Nevada, USA, 29 May–1 June 1995, pp. 178–189. ACM, New York (1995)

    Chapter  Google Scholar 

  32. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, 23–25 October 1995, pp. 581–592. IEEE Computer Society, Los Alamitos (1995)

    Google Scholar 

  33. Zhang, Y., Hu, F., Tang, J.: A mixture framework for inferring ancestral gene orders. BMC Genomics 13(Suppl 1), S7 (2012)

    Article  Google Scholar 

  34. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)

    Article  Google Scholar 

  35. Maňuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral multichromosomal genomes. BMC Bioinform. 13(Suppl 19), S11 (2012)

    Google Scholar 

  36. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: a high-throughput ortholog assignment system based on genome rearrangement. J. Comput. Biol. 14(9), 1160–1175 (2007)

    Article  MathSciNet  Google Scholar 

  37. Dewey, C.N.: Positional orthology: putting genomic evolutionary relationships into context. Brief. Bioinform. 12(5), 401–412 (2011)

    Article  Google Scholar 

  38. Doerr, D., Thévenin, A., Stoye, J.: Gene family assignment-free comparative genomics. BMC Bioinform. 13(Suppl 19), S3 (2012)

    Article  Google Scholar 

  39. Zhu, B.: Approximability and fixed-parameter tractability for the exemplar genomic distance problems. In: Chen, J., Cooper, S.B. (eds.) Proceedings: Theory and Applications of Models of Computation, 6th Annual Conference, TAMC 2009, Changsha, China, 18–22 May 2009. Lecture Notes in Computer Science, vol. 5532, pp. 71–80. Springer, Berlin (2009)

    Chapter  Google Scholar 

  40. El-Mabrouk, N., Sankoff, D.: Analysis of gene order evolution beyond single-copy genes. Methods Mol. Biol. 855, 397–429 (2012)

    Article  Google Scholar 

  41. Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  42. Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Computational Biology Series, vol. 1, pp. 537–550. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

  43. Gregory, T.R. (ed.): The Evolution of the Genome. Elsevier/Academic Press, Amsterdam (2004)

    Google Scholar 

  44. Page, R.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

    Google Scholar 

  45. Page, R.: Genetree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14, 819–820 (1998)

    Article  Google Scholar 

  46. Doyon, J.P., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Brief. Bioinform. 12(5), 392–400 (2011)

    Article  Google Scholar 

  47. Miklos, I., Tannier, E.: Approximating the number of double cut-and-join scenarios. Theor. Comput. Sci. 439, 30–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bulteau, L., Jiang, M.: Inapproximability of (1,2)-exemplar distance. In: Bleris, L.G., Mandoiu, I.I., Schwartz, R., Wang, J. (eds.) Proceedings: Bioinformatics Research and Applications—8th International Symposium, ISBRA 2012, Dallas, TX, USA, 21–23 May 2012. Lecture Notes in Computer Science, vol. 7292, pp. 13–23. Springer, Berlin (2012)

    Chapter  Google Scholar 

  49. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approximability of comparing genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. J. Comput. Biol. 15(8), 1093–1115 (2008)

    Article  MathSciNet  Google Scholar 

  51. Goodstadt, L., Ponting, C.P.: Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS Comput. Biol. 2(9), e133 (2006)

    Article  Google Scholar 

  52. Ouangraoua, A., Tannier, E., Chauve, C.: Reconstructing the architecture of the ancestral amniote genome. Bioinformatics 27(19), 2664–2671 (2011)

    Article  Google Scholar 

  53. Makino, T., McLysaght, A.: Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant. Genome Res. 22(12), 2427–2435 (2012)

    Article  Google Scholar 

  54. Cai, B., Yang, X., Tuskan, G.A., Cheng, Z.M.: Microsyn: a user friendly tool for detection of microsynteny in a gene family. BMC Bioinform. 12, 79 (2011)

    Article  Google Scholar 

  55. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites model of genome evolution. Proc. Natl. Acad. Sci. USA 105(38), 14254–14261 (2008)

    Article  Google Scholar 

  56. Fitch, W.: Phylogenies constrained by cross-over process as illustrated by human hemoglobins and a thirteen-cycle, eleven amino-acid repeat in human apolipoprotein A–I. Genetics 86, 623–644 (1977)

    Google Scholar 

  57. Bertrand, D., Gascuel, O.: Topological rearrangements and local search method for tandem duplication trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 15–28 (2005)

    Article  Google Scholar 

  58. Elemento, O., Gascuel, O., Lefranc, M.P.: Reconstructing the duplication history of tandemly repeated genes. Mol. Biol. Evol. 19(3), 278–288 (2002)

    Article  Google Scholar 

  59. Tang, M., Waterman, M., Yooseph, S.: Zinc finger gene clusters and tandem gene duplication. In: Research in Molecular Biology (RECOMB 2001), pp. 297–304 (2001)

    Google Scholar 

  60. Zhang, L., Ma, B., Wang, L., Xu, Y.: Greedy method for inferring tandem duplication history. Bioinformatics 19, 1497–1504 (2003)

    Article  Google Scholar 

  61. Gascuel, O., Bertrand, D., Elemento, O.: Reconstructing the duplication history of tandemly repeated sequences. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 205–235. Oxford University Press, Oxford (2005)

    Google Scholar 

  62. Lajoie, M., Bertrand, D., El-Mabrouk, N., Gascuel, O.: Duplication and inversion history of a tandemly repeated genes family. J. Comput. Biol. 14(4), 462–478 (2007)

    Article  MathSciNet  Google Scholar 

  63. Bertrand, D., Lajoie, M., El-Mabrouk, N.: Inferring ancestral gene orders for a family of tandemly arrayed genes. J. Comput. Biol. 15(8), 1063–1077 (2008)

    Article  MathSciNet  Google Scholar 

  64. Lajoie, M., Bertrand, D., El-Mabrouk, N.: Inferring the evolutionary history of gene clusters from phylogenetic and gene order data. Mol. Biol. Evol. 27(4), 761–772 (2010)

    Article  Google Scholar 

  65. Tremblay-Savard, O., Bertrand, D., El-Mabrouk, N.: Evolution of orthologous tandemly arrayed gene clusters. BMC Bioinform. 12(Suppl 9), S2 (2011)

    Article  MathSciNet  Google Scholar 

  66. Muffato, M., Louis, A., Poisnel, C.E., Crollius, H.R.: Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 26(8), 1119–1121 (2010)

    Article  Google Scholar 

  67. Hu, F., Gao, N., Zhang, M., Tang, J.: Maximum likelihood phylogenetic reconstruction using gene order encodings. In: 8th Annual IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB’11) (2011)

    Google Scholar 

  68. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: Dupcar: reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–1027 (2008)

    Article  MathSciNet  Google Scholar 

  69. Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N.: Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss. In: Moulton, V., Singh, M. (eds.) Proceedings: Algorithms in Bioinformatics, 10th International Workshop, WABI 2010, Liverpool, UK, 6–8 September 2010. Lecture Notes in Computer Science, vol. 6293, pp. 78–89. Springer, Berlin (2010)

    Chapter  Google Scholar 

  70. Gagnon, Y., Blanchette, M., El-Mabrouk, N.: A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinform. 13(Suppl 19), S4 (2012)

    Google Scholar 

  71. Bérard, S., Gallien, C., Boussau, B., Szöllősi, G.J., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), i382–i388 (2012)

    Article  Google Scholar 

  72. Jun, J., Mandoiu, I.I., Nelson, C.E.: Identification of mammalian orthologs using local synteny. BMC Genomics 10, 630 (2009)

    Article  Google Scholar 

  73. Vilella, A., Severin, J., Ureta-Vidal, A., Heng, L., Birney, E.: EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19(2), 327–335 (2009)

    Article  Google Scholar 

  74. Wu, Y.C., Rasmussen, M.D., bansal, M.S., Kellis, M.: Treefix: statistically informed gene tree error correction using species trees. Syst. Biol. 62(1), 110–120 (2013)

    Article  Google Scholar 

  75. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Automatic genome-wide reconstruction of phylogenetic gene trees. Bioinformatics 23(13), i549–i558 (2007)

    Article  Google Scholar 

  76. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007)

    Article  Google Scholar 

  77. Shimodaira, H., Hasegawa, M.: Consel: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17(12), 1246–1247 (2001)

    Article  Google Scholar 

  78. Kahn, C.L., Hristov, B.H., Raphael, B.J.: Parsimony and likelihood reconstruction of human segmental duplications. Bioinformatics 26(18), i446–i452 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Agence Nationale pour la Recherche, Ancestrome project ANR-10-BINF-01-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Chauve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E. (2013). Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds) Models and Algorithms for Genome Evolution. Computational Biology, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5298-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5298-9_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5297-2

  • Online ISBN: 978-1-4471-5298-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics