Skip to main content

Validating and Comparing with Experiments and Other Models

  • Chapter
  • First Online:
  • 1152 Accesses

Abstract

The objective of this chapter is to present and compare the performance parameters and the evolution of some process variables obtained by means of quasi-dimensional simulations with experimental results and with the corresponding estimations of other simulation or theoretical models. First, we summarize some of the basic performance parameters that are suitable for calculation. Second, some calculated parameters and functions obtained either from zero-dimensional or quasi-dimensional schemes are compared with engine test bench measurements. Finally, we analyze the evolution of a four-stroke Otto engine from a finite-time thermodynamics framework in order to elucidate to what extent a purely theoretical thermodynamic scheme is capable of reproducing realistic simulation results. It will be concluded that quasi-dimensional simulation models are capable to improve theoretical formulations in order to better approach theoretical predictions to experimental results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In general the term brake added to power, work, or efficiency refers to its magnitude measured at the output shaft, while the term indicated refers to the value exerted or computed at the piston.

  2. 2.

    It is usual to find in the literature several definitions of heating value, although their numerical values only differ by a few percent [1]. We shall take the lower heating value at constant pressure when evaluating the fuel conversion efficiency.

  3. 3.

    The cycle shown in Fig. 3.1 or in other figures in this chapter is an arbitrary one during the engine evolution. As it will be detailed in Chap. 5 appreciable oscillations in pressure or other representative variables can occur from one cycle to the following. The physical origin of this cyclic variability is quite complex and will be analyzed in that chapter.

  4. 4.

    The publication in 1975 of Curzon–Ahlborn’s pioneering work [13, 14] opened the perspective of establishing more realistic theoretical bounds for real energy converters, and give raise to the birth and development of thermodynamic optimization, particularly FTT [1518]. They showed that a Carnot heat engine coupled to external reservoirs through heat transfers that obey the Fourier law has an efficiency at maximum power given by \(\eta _{CA}=1-\sqrt{\tau }\). This expression provides a surprisingly good approximation to the observed efficiencies of very different engines [1922].

  5. 5.

    Note that in this irreversible efficiency, \(\eta \), the heat input, \(Q_{23}\), is considered as coming from the reversible cycle. So the difference between the efficiency of the reversible, \(\eta _\text {rev}\), and the corresponding irreversible cycle, \(\eta \), comes only from the work output, calculated either in reversible, \(W_\text {rev}\) or irreversible basis, \(W\). In both efficiencies, the heat input is considered the same.

  6. 6.

    The parametric variable is not always the angular speed, it can be elected among the relevant variables of the system in which respect to its performance.

References

  1. J. Heywood, Internal Combustion Engine Fundamentals, Chap. 3 (McGraw-Hill, New York, 1988), pp. 78–81

    Google Scholar 

  2. P.L. Curto-Risso, A. Medina, A. Calvo Hernández, J. Appl. Phys. 104, 094911 (2008)

    Article  Google Scholar 

  3. P.L. Curto-Risso, A. Medina, A. Calvo Hernández, J. Appl. Phys. 105, 094904 (2009)

    Google Scholar 

  4. G. Beretta, M. Rashidi, J. Keck, Combust. Flame 52, 217 (1983)

    Article  Google Scholar 

  5. A. Fischer, K. Hoffmann, J. Non-Equilib, Thermodyn. 29, 9 (2004)

    MATH  Google Scholar 

  6. J. Keck, in Proceedings of Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1982), pp. 1451–66

    Google Scholar 

  7. H. Bayraktar, Renew. Energ. 30, 1733 (2005)

    Article  Google Scholar 

  8. M. Al-Hasan, Energ. Convers. Manage. 44, 1547 (2003)

    Google Scholar 

  9. M. Ameri, B. Ghobadian, I. Baratian, Renew. Energy 33, 1469 (2008)

    Article  Google Scholar 

  10. W. Hsieh, R. Chen, T. Wu, T. Lin, Atmos. Environ. 36, 403 (2002)

    Article  Google Scholar 

  11. M. Celik, Appl. Therm. Eng. 28, 396 (2008)

    Article  Google Scholar 

  12. D. Descieux, M. Feidt, Appl. Therm. Eng. 27, 1457 (2007)

    Article  Google Scholar 

  13. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  Google Scholar 

  14. H.S. Leff, Am. J. Phys. 55, 602 (1987)

    Article  Google Scholar 

  15. A. Bejan, Advanced Engineering Thermodynamics, 3rd edn. (Wiley, Hoboken, 2006)

    Google Scholar 

  16. A. de Vos, Thermodynamics of Solar Energy Conversion (Wiley, Weinheim, 2008)

    Google Scholar 

  17. A. Durmayaz, O.S. Sogut, B. Sahin, H. Yavuz, Prog. Energ. Combust. 30, 175 (2004)

    Article  Google Scholar 

  18. S. Velasco, J.M.M. Roco, A. Medina, J.A. White, A. Calvo Hernández, J. Phys. D: Appl. Phys. 33, 355 (2000)

    Google Scholar 

  19. B. Jiménez de Cisneros, L. Arias-Hernández, A. Calvo Hernández, Phys. Rev. E 73, 057103 (2006)

    Article  Google Scholar 

  20. B. Jiménez de Cisneros, A. Calvo Hernández, Phys. Rev. E 77, 041127 (2008)

    Article  Google Scholar 

  21. M. Esposito, R. Kawai, K. Lindenberg, C. Van der Broeck, Phys. Rev. Lett. 105, 150603 (2010)

    Google Scholar 

  22. C. de Tomás, A. Calvo Hernández, J.M.M. Roco, Phys. Rev. E 85, 010104(R) (2012)

    Google Scholar 

  23. F. Angulo-Brown, T.D. Navarrete-González, J.A. Rocha-Martínez, in Recent Advances in Finite-Time Thermodynamics, ed. by C. Wu, L. Chen, J. Chen (Nova Science Publishers, Commack, New York, 1999)

    Google Scholar 

  24. J.A. Rocha-Martínez, T.D. Navarrete-González, C.G. Pavía-Miller, A. Ramírez-Rojas, F. Angulo-Brown, Int. J. Amb. Energy 27, 181 (2006)

    Article  Google Scholar 

  25. S. Özkaynak, S. Götkun, H. Yavuz, J. Phys. D: Appl. Phys. 27, 1139 (1994)

    Article  Google Scholar 

  26. J. Chen, J. Phys. D: Appl. Phys. 27, 1144 (1994)

    Article  Google Scholar 

  27. X. Qin, L. Chen, F. Sun, C. Wu, Eur. J. Phys. 24, 359 (2003)

    Article  MATH  Google Scholar 

  28. Y. Ge, L. Chen, F. Sun, C. Wu, Appl. Energy 81, 397 (2005)

    Article  Google Scholar 

  29. A. Calvo Hernández, A. Medina, J.M.M. Roco, S. Velasco, Eur. J. Phys. 16, 73 (1995)

    Google Scholar 

  30. A. Calvo Hernández, J.M.M. Roco, A. Medina, S. Velasco, Eur. J. Phys. 17, 11 (1996)

    Article  Google Scholar 

  31. J.M.M. Roco, A. Medina, A. Calvo Hernández, S. Velasco, Revista Española de Física 12, 39 (1998)

    Google Scholar 

  32. M. Mozurkewich, R.S. Berry, J. Appl. Phys. 53(1), 34 (1982)

    Article  Google Scholar 

  33. Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Exergy 2(3), 274 (2005)

    Article  Google Scholar 

  34. F. Angulo-Brown, J.A. Rocha-Martínez, T.D. Navarrete-González, J. Phys. D: Appl. Phys. 29, 80 (1996)

    Article  Google Scholar 

  35. J. Heywood, Internal Combustion Engine Fundamentals, Chap. 13 (McGraw-Hill, New York, 1988), pp. 722–724

    Google Scholar 

  36. S. Sánchez-Orgaz, A. Medina, A. Calvo Hernández, Energ. Convers. Manage. 51, 2134 (2010)

    Google Scholar 

  37. Y. Haseli, Energ. Convers. Manage. 68, 133 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Medina .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Medina, A., Curto-Risso, P.L., Hernández, A.C., Guzmán-Vargas, L., Angulo-Brown, F., Sen, A.K. (2014). Validating and Comparing with Experiments and Other Models. In: Quasi-Dimensional Simulation of Spark Ignition Engines. Springer, London. https://doi.org/10.1007/978-1-4471-5289-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5289-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5288-0

  • Online ISBN: 978-1-4471-5289-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics