Introduction

  • Alejandro Medina
  • Pedro Luis Curto-Risso
  • Antonio Calvo Hernández
  • Lev Guzmán-Vargas
  • Fernando Angulo-Brown
  • Asok K Sen
Chapter

Abstract

In addition to experimental techniques, modeling is nowadays a basic procedure for the design, development, and optimization of internal combustion engines. Besides, modeling is a method to improve our knowledge of the physics and chemistry underlying their operation. A combination of simplifying hypotheses, basic physical and chemical laws expressed in the form of mathematical equations, and the numerical computational capabilities of computer facilities, enable us to propose realistic models, validate them by comparing with real engine outputs, and estimate the sensitivity of the engine variables to several parameters.

Keywords

Combustion Entropy Torque Hydrocarbon Diesel 

References

  1. 1.
    J. Heywood, Internal Combustion Engine Fundamentals, chap. 14 (McGraw-Hill, New York, 1988), pp. 748–819Google Scholar
  2. 2.
    H. Bayraktar, O. Durgun, Energy Sources 25, 439 (2003)Google Scholar
  3. 3.
    S. Verhelst, C. Sheppard, Energy Convers. Manage. 50, 1326 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Blumberg, J. Kummer, Comb. Sci. Tech. 4, 73 (1971)CrossRefGoogle Scholar
  5. 5.
    J. Heywood, J. Higgins, P. Watts, R. Tabaczynski, SAE Paper 790291 (1979)Google Scholar
  6. 6.
    J. Heywood, Internal Combustion Engine Fundamentals,chap. 14 (McGraw-Hill, New York, 1988), pp. 766–768Google Scholar
  7. 7.
    N. Komninos, C. Rakopoulos, Renew. Sustain. Energy Rev. 16, 1588 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Niven, Renew. Sustain Energy Rev. 9, 535 (2005)CrossRefGoogle Scholar
  9. 9.
    K.A. Agarwal, Prog. Energy Combust. Sci. 33, 233 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Verhelst, R. Sierens, Int. J. Hydrogen Energy 32, 3545 (2007)CrossRefGoogle Scholar
  11. 11.
    G. Timilsina, A. Shrestha, Energy 36, 2055 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Najjar, Open Fuels Energy Sci. J. 2, 1 (2009)CrossRefGoogle Scholar
  13. 13.
    N. Blizard, J. Keck, SAE Paper 740191 (1974)Google Scholar
  14. 14.
    J. Heywood, in International Symposium COMODIA 94 (1994)Google Scholar
  15. 15.
    S. Hosseini, R. Abdolah, A. Khani, in Proceedings of the World Congress on Engineering, vol. II (2008)Google Scholar
  16. 16.
    C. Borgnakke, P. Puzinauskas, Y. Xiao, Spark ignition engine simulation models. Technical report, Department of Mechanical Engineering and Applied Mechanics. University of Michigan. Report No. UM-MEAM-86–35 (1986)Google Scholar
  17. 17.
    G. Beretta, M. Rashidi, J. Keck, Combust. Flame 52, 217 (1983)CrossRefGoogle Scholar
  18. 18.
    D. Bradley, M. Haq, R. Hicks, T. Kitagawa, M. Lawes, C. Sheppard, R. Woolley, Combust. Flame 133, 415 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Heywood, Internal Combustion Engine Fundamentals, chap. 14 (McGraw-Hill, New York, 1988), pp. 771–773Google Scholar
  20. 20.
    R. Tabaczynski, C. Ferguson, K. Radhakrishnan, SAE Paper 770647 (1977)Google Scholar
  21. 21.
    J. Keck, J. Heywood, G. Noske, SAE Paper 870164 (1987)Google Scholar
  22. 22.
    J. Heywood, Internal Combustion Engine Fundamentals, chap. 14 (McGraw-Hill, New York, 1988), pp. 797–816Google Scholar
  23. 23.
    J. Beauquel, Computational Fluid Dynamics Modelling: Flow Behaviour in the Combustion Chamber of a Spark Ignition Engine (VDM Verlag, 2009)Google Scholar
  24. 24.
    H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Methods (Longman Scientific and Technical, England, 1995)Google Scholar
  25. 25.
    J. Gordon, M. Huleihil, J. Appl. Phys. 72, 829 (1992)CrossRefGoogle Scholar
  26. 26.
    A. Fischer, K. Hoffmann, J. Non-Equilib, Thermodynamics 29, 9 (2004)MATHGoogle Scholar
  27. 27.
    I. Novikov, J. Nucl. Energy II 7, 125 (1958)Google Scholar
  28. 28.
    M. Chambadal, Revue Générale de L’Électricité 67, 332 (1958)Google Scholar
  29. 29.
    B. Andresen, P. Salamon, R. Berry, J. Chem. Phys. 66, 1571 (1977)CrossRefGoogle Scholar
  30. 30.
    B. Andresen, P. Salamon, R. Berry, Phys. Today 37, 62 (1984)CrossRefGoogle Scholar
  31. 31.
    A. Bejan, Entropy Generation Through Heat and Fluid Flows (Wiley, New York, 1982)Google Scholar
  32. 32.
    A. Bejan, J. Appl. Phys. 79, 1191 (1996)CrossRefGoogle Scholar
  33. 33.
    D.P. Sekulic, J. Appl. Phys. 83, 4561 (1998)CrossRefGoogle Scholar
  34. 34.
    M. Moran, Energy 23, 517 (1998)CrossRefGoogle Scholar
  35. 35.
    E. Gyftopoulos, Energy 24, 1035 (1999)CrossRefGoogle Scholar
  36. 36.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)CrossRefGoogle Scholar
  37. 37.
    A. de Vos, Thermodynamics of Solar Energy Conversion (Wiley, New York, 2008)Google Scholar
  38. 38.
    N. Sánchez Salas, S. Velasco, A. Calvo Hernández, Energy Convers. Manage. 43, 2341 (2002)CrossRefGoogle Scholar
  39. 39.
    N. Sánchez Salas, L. López-Palacios, S. Velasco, A. Calvo Hernández, Phys. Rev. E 82, 051101 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Esposito, K. Lindenberg, C. Van der Broeck, Phys. Rev. Lett. 102, 130602 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Esposito, K. Lindenberg, C. Van der Broeck, EPL 85, 60010 (2009)CrossRefGoogle Scholar
  42. 42.
    Z. Tu, J. Phys. A: Math. Theor. 41, 312003 (2008)CrossRefGoogle Scholar
  43. 43.
    L. Chen, F. Sun (eds.), Advances in Finite-Time Thermodynamics (Nova Science Publishers, Hauppauge, New York, 2004)Google Scholar
  44. 44.
    A. Durmayaz, O.S. Sogut, B. Sahin, H. Yavuz, Prog. Energy Combust. 30, 175 (2004)CrossRefGoogle Scholar
  45. 45.
    M. Feidt, Entropy 11, 529 (2009)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)CrossRefGoogle Scholar
  47. 47.
    C.D. Rakopoulos, E.G. Giakoumis, Prog. Energy Combust. 32, 2 (2006)CrossRefGoogle Scholar
  48. 48.
    R. Ebrahimi, D. Ghanbarian, M. Tadayon, J. Am. Sci. 6, 27 (2010)Google Scholar
  49. 49.
    M. Gumus, M. Atmaca, T. Yilmaz, Int. J. Energy Res. 33, 745 (2009)CrossRefGoogle Scholar
  50. 50.
    Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Exergy 2(3), 274 (2005)CrossRefGoogle Scholar
  51. 51.
    Y. Ge, L. Chen, F. Sun, Appl. Energy 85, 618 (2008)CrossRefGoogle Scholar
  52. 52.
    J.C. Lin, S. Hou, Energy Convers. Manage. 49, 1218 (2008)CrossRefGoogle Scholar
  53. 53.
    M. Huleihil, Physics Research International ID 496057 (2011)Google Scholar
  54. 54.
    F. Angulo-Brown, T.D. Navarrete-González, J.A. Rocha-Martínez, in Recent Advances in Finite-Time Thermodynamics, ed. by C. Wu, L. Chen, J. Chen (Nova Science Publishers, Commack, New York, 1999)Google Scholar
  55. 55.
    J.A. Rocha-Martínez, T.D. Navarrete-González, C.G. Pavía-Miller, A. Ramírez-Rojas, F. Angulo-Brown, Int. J. Ambient Energy 27, 181 (2006)CrossRefGoogle Scholar
  56. 56.
    M. Huleihil, B. Andresen, J. Appl. Phys. 100, 114914 (2006)CrossRefGoogle Scholar
  57. 57.
    L. Chen, S. Xia, F. Sun, Energy Fuels 24, 295 (2010)CrossRefGoogle Scholar
  58. 58.
    D. Lyon, in Petroleum based fuels and automotive applications (I. Mech. E. Conf. Proc., (MEP), London, 1986)Google Scholar
  59. 59.
    C. Stone, A. Brown, P. Beckwith, SAE Paper 960613 (1996)Google Scholar
  60. 60.
    R. Stone, Introduction to Internal Combustion Engines, chap. 4 (Macmillan Press LTD., London, 1999), pp. 181–184Google Scholar
  61. 61.
    N. Ozdor, M. Dulger, E. Sher, SAE Paper 940987 (1994)Google Scholar
  62. 62.
    H. Zhang, X. Han, B. Yao, G. Li, Appl. Energy 104, 992 (2013)CrossRefGoogle Scholar
  63. 63.
    J. Heywood, Internal Combustion Engine Fundamentals, chap. 9 (McGraw-Hill, New York, 1988), pp. 413–427Google Scholar
  64. 64.
    E. Abdi Aghdam, A.A. Burluka, T. Hattrell, K. Liu, G.W. Sheppard, J. Neumeister, N. Crundwell, SAE Paper 2007–01-0939 (2007)Google Scholar
  65. 65.
    M. Parsl, H. Daneshyar, SAE Paper 892100 (1989)Google Scholar
  66. 66.
    N. Trigui, W. Choi, Y. Guezennec, SAE Paper 962085 (1996)Google Scholar
  67. 67.
    D. Park, P. Sullivan, J. Wallace, SAE Paper 2004–01-1351 (2004)Google Scholar
  68. 68.
    F. Ma, H. Shen, C. Liu, D. Wu, G. Li, D. Jiang, 961969 (1996)Google Scholar
  69. 69.
    G. de Soete, in Mechanical Engineering Conference Proceeding, vol. I (Int. Conf. on Combustion Engineering, (MEP), London, 1983)Google Scholar
  70. 70.
    D. Lord, R. Anderson, D. Brehob, Y. Kim, SAE Paper 930463 (1993)Google Scholar
  71. 71.
    R. Winsor, D. Patterson, SAE Paper 730086 (1973)Google Scholar
  72. 72.
    T. Urushihara, T. Murayama, Y. Takagi, K. Lee, SAE Paper 950813 (1995)Google Scholar
  73. 73.
    J. Whitelaw, H. Xu, SAE Paper 950683 (1995)Google Scholar
  74. 74.
    S. Russ, G. Lavoie, W. Dai, SAE Paper 1999–01-3506 (1999)Google Scholar
  75. 75.
    H. Schock, Y. Shen, E. Timm, T. Stuecken, A. Fedewa, P. Keller, SAE Paper 2003–01-1357 (2003)Google Scholar
  76. 76.
    C. Ji, P. Ronney, SAE Paper 2002–01-2736 (2002)Google Scholar
  77. 77.
    F. Zhao, M. Taketomi, K. Nishida, H. Hiroyasu, SAE Paper 940988 (1994)Google Scholar
  78. 78.
    G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, SAE Paper 941880 (1994)Google Scholar
  79. 79.
    R. Stone, Introduction to Internal Combustion Engines, chap. 4 (Macmillan Press LTD., New York, 1999), pp. 155–164Google Scholar
  80. 80.
    A. Sen, G. Litak, K. Edwards, C. Finney, C. Daw, R. Wagner, Appl. Energy 88, 1648 (2011)Google Scholar
  81. 81.
    J. Heywood, Internal Combustion Engine Fundamentals, chap. 1 (McGraw-Hill, New York, 1988), pp. 37–41Google Scholar
  82. 82.
    A. Schmid, M. Grill, H.J. Berner, M. Bargende, S. Rossa, M. Böttcher, SAE Paper 2009–01-2659 (2009)Google Scholar
  83. 83.
    F. Zhao, M.C. Lai, D. Harrington, Prog. Energy Combust. 25, 437 (1999)CrossRefGoogle Scholar
  84. 84.
    K. Watanabe, S. Ito, T. Tsurushima, SAE Paper 2010–01-0544 (2010)Google Scholar
  85. 85.
    A. Ibrahim, S. Bari, Fuel 87, 1824 (2008)CrossRefGoogle Scholar
  86. 86.
    A. Ibrahim, S. Bari, Energy Convers. Manage. 50, 3129 (2009)CrossRefGoogle Scholar
  87. 87.
    R. Stone, Introduction to Internal Combustion Engines, chap. 4 (Macmillan Press LTD., New York, 1999), pp. 185–191Google Scholar
  88. 88.
    G. Kalghatgi, SAE Paper 870163 (1987)Google Scholar
  89. 89.
    L. Camilli, J. Gonnella, T. Jacobs, SAE Paper 2012–04-16 (2012)Google Scholar
  90. 90.
    A. Alkidas, Energy Convers. Manage. 48, 2751 (2007)CrossRefGoogle Scholar
  91. 91.
    I. Altin, A. Bilgin, Energy Convers. Manage. 50, 1902 (2009)CrossRefGoogle Scholar
  92. 92.
    M. Rashidi, Combust. Flame 42, 111 (1981)CrossRefGoogle Scholar
  93. 93.
    C.S. Daw, C.E.A. Finney, J.B. Green, M.B. Kennel, J.F. Thomas, F.T. Connolly, SAE Paper 962086 (1996)Google Scholar
  94. 94.
    C.S. Daw, M.B. Kennel, C.E.A. Finney, F.T. Connolly, Phys. Rev. E 57, 2811 (1998)CrossRefGoogle Scholar
  95. 95.
    E. Pariotis, G. Kosmadakis, C. Rakopoulos, Energy Convers. Manage. 60, 45 (2012)CrossRefGoogle Scholar
  96. 96.
    C. Rakopoulos, G. Kosmadakis, A. Dimaratos, E. Pariotis, Appl. Energy 88, 111 (2011)CrossRefGoogle Scholar
  97. 97.
    E. Galloni, Appl. Therm. Eng. 29, 1131 (2009)CrossRefGoogle Scholar
  98. 98.
    L. Thobois, G. Rymer, T. Soulères, T. Poinsot, SAE Paper 2004–01-1854 (2004)Google Scholar
  99. 99.
    O. Vermorel, S. Richard, O. Colin, C. Angelberger, A. Benkenida, in International Multidimensional Engine Modeling User’s Group Meeting (2007)Google Scholar
  100. 100.
    C. Lacour, C. Pera, B. Enaux, O. Vermorel, C. Angelberger, T. Poinsot, in European Combustion Meeting (2009)Google Scholar
  101. 101.
    R. Stone, Introduction to Internal Combustion Engines, chap. 3 (Macmillan Press LTD., New York, 1999), pp. 109–113Google Scholar
  102. 102.
    S. Kumar, M. De-Zylva, H. Waston, SAE Paper 912454 (1991)Google Scholar
  103. 103.
    F. Shen, P. Hinze, J.B. Heywood, SAE Paper 961187 (1996)Google Scholar
  104. 104.
    P. Curto-Risso, A. Medina, A. Calvo Hernández, L. Guzmán-Vargas, F. Angulo-Brown, Appl. Energy 88, 1557 (2011)CrossRefGoogle Scholar
  105. 105.
    P.L. Curto-Risso, A. Medina, A. Calvo Hernández, L. Guzmán-Vargas, F. Angulo-Brown, Physica A 389, 5662 (2010)CrossRefGoogle Scholar
  106. 106.
    P.L. Curto-Risso, A. Medina, A. Calvo Hernández, in 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact (Novi Sad, Serbia, 2011)Google Scholar
  107. 107.
    H. Kantz, T. Schreiber, Non-Linear Time Serie Analysis (Cambridge University Press, Cambridge, 2004)Google Scholar
  108. 108.
    P.C. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Stuzik, H. Stanley, Nature 399, 461 (1999)CrossRefGoogle Scholar
  109. 109.
    A. Goldberger, L. Amaral, J. Hausdorff, P.C. Ivanov, C.K. Peng, H. Stanley, Proc. Natl. Acad. Sci. U.S.A. 99(Suppl 1), 2466 (2002)CrossRefGoogle Scholar
  110. 110.
    M. Costa, A.L. Goldberger, C.K. Peng, Phys. Rev. Lett. 89, 068102 (2002)CrossRefGoogle Scholar
  111. 111.
    L. Telesca, V. Lapenna, F. Vallianatos, Phys. Earth Planet. Inter. 131(1), 63 (2002). doi: 10.1016/S0031-9201(02)00014-6
  112. 112.
    C. Letelier, S. Meunier, G. Gouesbet, F. Neveu, T. Duverger, B. Cousyn, SAE Paper 971640 (1997)Google Scholar
  113. 113.
    J.B.J. Green, C.S. Daw, J.S. Armfield, R.M. Wagner, J.A. Drallmeier, M.B. Kennel, P. Durbetaki, SAE Paper 1999–01-0221 (1999)Google Scholar
  114. 114.
    C.S. Daw, C.E.A. Finney, M.B. Kennel, Phys. Rev. E 62, 1912 (2000)CrossRefGoogle Scholar
  115. 115.
    D. Scholl, S. Russ, SAE Paper 1999–01-3513 (1999)Google Scholar
  116. 116.
    A. Sen, G. Litak, T. Kaminski, M. Wendeker, Chaos 18, 033115 (2008)CrossRefGoogle Scholar
  117. 117.
    A. Sen, R. Longwic, G. Litak, K. Gorski, Mech. Syst. Signal Process. 22, 362 (2008)CrossRefGoogle Scholar
  118. 118.
    A. Sen, G. Litak, C. Finney, C. Daw, R. Wagner, Appl. Energy 87, 1736 (2010)CrossRefGoogle Scholar
  119. 119.
    A. Sen, G. Litak, B. Yao, G. Li, Appl. Therm. Eng. 30, 776 (2010)CrossRefGoogle Scholar
  120. 120.
    A. Sen, S. Ash, B. Huang, Z. Huang, Appl. Therm. Eng. 31, 2247 (2011)CrossRefGoogle Scholar
  121. 121.
    A. Sen, J. Zheng, Z. Huang, Appl. Energy 88, 2324 (2011)CrossRefGoogle Scholar
  122. 122.
    G. Litak, T. Kaminski, J. Czarnigowski, D. Zukowski, M. Wendeker, Meccanica 42, 423 (2007)MATHCrossRefGoogle Scholar
  123. 123.
    G. Litak, T. Kaminski, R. Rusinek, J. Czarnigowski, M. Wendeker, Chaos Solitons Fractals 35, 578 (2008)CrossRefGoogle Scholar
  124. 124.
    T. Kaminski, M. Wendeker, K. Urbanowicz, G. Litak, Chaos 14, 461 (2004)CrossRefGoogle Scholar
  125. 125.
    G. Litak, R. Taccani, R. Radu, K. Urbanowicz, J.A. Holyst, M. Wendeker, A. Giadrossi, Chaos Solitons Fractals 23, 1695 (2005)MATHGoogle Scholar
  126. 126.
    G. Litak, T. Kaminski, J. Czarnigowski, A.K. Sen, M. Wendeker, Meccanica 44, 1 (2009)MATHCrossRefGoogle Scholar
  127. 127.
    G. Li, B. Yao, Appl. Therm. Eng. 28, 611 (2008)CrossRefGoogle Scholar
  128. 128.
    R. Maurya, A. Agarwal, Appl. Energy 88, 1153 (2011)CrossRefGoogle Scholar
  129. 129.
    S. Wang, C. Ji, Int. J. Hydrogen Energy 37, 1112 (2012)CrossRefGoogle Scholar
  130. 130.
    M. Ceviz, F. Yüksel, Renew. Energy 31, 1950 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Alejandro Medina
    • 1
  • Pedro Luis Curto-Risso
    • 2
  • Antonio Calvo Hernández
    • 1
  • Lev Guzmán-Vargas
    • 3
  • Fernando Angulo-Brown
    • 4
  • Asok K Sen
    • 5
  1. 1.Departamento de Física AplicadaUniversidad de SalamancaSalamancaSpain
  2. 2.Instituto de Ingeniería Mecánica yUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Unidad Profesional Interdisciplinaria enInstituto Politécnico NacionalMéxico D.F.Mexico
  4. 4.Instituto Politécnico NacionalMéxico D.F.Mexico
  5. 5.Department of Mathematical SciencesRichard G. Lugar Centre for Renewable Energy, Indiana UniversityIndianapolisUSA

Personalised recommendations