Interspinous Devices: State of the Art

  • Christian Giannetti
  • Rapahel Bartalesi
  • Miria Tenucci
  • Matteo Galgani
  • Giuseppe Calvosa
Chapter

Abstract

Interspinous devices are in the class of medical devices that can be implanted in the lumbosacral spine using a minimal and often mini-invasive approach. Because their use has boomed over the last decade, we can state with confidence that this technological sector attracts a great deal of interest in a quest for techniques and materials able to reduce the invasiveness of the surgical procedure and increase its general bio-compatibility. An initial classification of interspinous devices from a biomechanical viewpoint may be carried out by assessing the rigidity of the distraction element (Table 1, Appendix). This identifies devices that are inaccurately categorized as nondeformable, involving the insertion of material with high mechanical rigidity into the space between the spinous process, where the distraction between the spinous processes may be considered constant. In other devices, a material with a shock-absorbing function is inserted between the spinous processes, which then undergoes appreciable elastic or visco-elastic deformation under physiological loads to increase bone implant compliance. In parallel with this sub-category, there are also devices that work by rigid stabilization of the interspinous space where stable posterior interspinous fusion is brought about by applying autologous or homologous bone and cruentation of the spinous processes. Clinical trials on interspinous devices available in the literature show a good relationship between the benefits for the patient and the use of resources in the disease treatment. Nevertheless, there is still margin for clinical investigation and for the establishment of verification and validation procedures of these devices in order to clearly define the relationship between the effects on the biomechanics of the functional unit and the clinical indications of such devices.

Keywords

Fatigue Obesity Titanium Migration Torque 

References

  1. 1.
    Kapandji I. The physiology of the joints. In: The trunk and the vertebral column, vol. 3. Edinburgh: Churchill Livingstone; 1998.Google Scholar
  2. 2.
    Wnek G, Bowlin G. Encyclopedia of biomaterials and biomedical engineering. New York: Informa Healthcare; 2008.Google Scholar
  3. 3.
    Richards J, Majumdar S, Lindsey D, Beaupre G, Yerby S. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine. 2005;30(7):744.PubMedCrossRefGoogle Scholar
  4. 4.
    Siddiqui M, Karadimas E, Nicol M, Smith F, Wardlaw D. Influence of X-STOP on neural foramina and spinal canal area in spinal stenosis. Spine. 2006;31(25):2958.PubMedCrossRefGoogle Scholar
  5. 5.
    Bono C, Vaccaro A. Interspinous process devices in the lumbar spine. J Spinal Disord Tech. 2007;20(3):255.PubMedCrossRefGoogle Scholar
  6. 6.
    Siddiqui M, Karadimas E, Nicol M. Effects of X-STOP device on sagittal lumbar spine kine-matics in spinal stenosis. J Spinal Disord Tech. 2006;19(5):328–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilke H, Drumm J, Haussler K, Mack C, Steudel W, Kettler A. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J. 2008;17(8):1049–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Lindsey D, Swanson K, Fuchs P, Hsu K, Zucherman J, Yerby S. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine. 2003;28(19):2192.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim D, Cammisa F, Fessler R. Dynamic reconstruction of the spine. New York: Thieme Medical Pub; 2006.Google Scholar
  10. 10.
    Wittenberg R, Shea M, Swartz D, Lee K, White III A, Hayes W. Importance of bone mineral density in instrumented spine fusions. Spine. 1991;16(6):647.PubMedCrossRefGoogle Scholar
  11. 11.
    Callaghan J, Pada A, McGill S. Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clin Biomech. 1999;14(3):203–16.CrossRefGoogle Scholar
  12. 12.
    Shepherd D, Leahy J, Mathias K, Wilkinson S, Hukins D. Spinous process strength. Spine. 2000;25(3):319.PubMedCrossRefGoogle Scholar
  13. 13.
    Tal war V, Lindsey D, Fredrick A, Hsu K, Zucherman J, Yerby S. Insertion loads of the X-STOP interspinous process distraction system designed to treat neurogenic intermittent claudication. Eur Spine J. 2006;15(6):908–12.CrossRefGoogle Scholar
  14. 14.
    Adams M, Dolan P. Recent advances in lumbar spinal mechanics and their clinical significance. Clin Biomech. 1995;10(I):3–19.CrossRefGoogle Scholar
  15. 15.
    Adams M, McNally D, Dolan P. Stress distributions inside intervertebral discs. J Bone Joint Surg Br. 1996;78:965–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Boos N, Aebi M. Spinal disorders: fundamentals of diagnosis and treatment. Berlin/New York: Springer; 2007.Google Scholar
  17. 17.
    Dunlop R, Adams M, Hutton W. Disc space narrowing and the lumbar facet joints. J Bone Joint Surg Br. 1984;66(5):706–10.PubMedGoogle Scholar
  18. 18.
    Swanson K, Lindsey D, Hsu K, Zucherman J, Yerby S. The effects of an interspinous implant on intervertebral disc pressures. Spine. 2003;28(I):26.PubMedCrossRefGoogle Scholar
  19. 19.
    Wiseman C, Lindsey D, Fredrick A, Yerby S. The effect of an interspinous process implant on facer loading during extension. Spine. 2005;30(8):903.PubMedCrossRefGoogle Scholar
  20. 20.
    Sharma M, Langrana N, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine. 1995;20(8):887–900.PubMedCrossRefGoogle Scholar
  21. 21.
    Adams M, Dolan P. Spine biomechanics. J Biomech. 2005;38(10):1972–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Kurtz S, Devine J. PEEK biomarerials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H. American Society for Testing and Materials. J Bone Joint Surg Am. 2006;88 Suppl 2:103–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications. Mater Sci Eng A. 1999;A273–275:149–160.Google Scholar
  25. 25.
    Vena P, Franzoso G, Gastaldi D, Contra R, Dallolio V. A finite element model of rhe L4-L5 spinal motion segment: biomechanical compatibility of an interspinous device. Comput Methods Biomech Biomed Engin. 2005;8(1):7–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Q, Teo E. Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys. 2008;30(10):1246–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Lafage V, Gangner N, Senegas J, Lavasre F, Skalli W. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine. 2007;32(16):1706.PubMedCrossRefGoogle Scholar
  28. 28.
    Minns R, Walsh W. Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in rhe lumbar spine. Spine. 1997;22(16):1819.PubMedCrossRefGoogle Scholar
  29. 29.
    Rohlmann A, Zander T, Burra N, Bergmann G. Effect of an interspinous implant on loads in the lumbar spine/Einuss eines interspinosen Implantars auf die Belasrungen der Lendenwirbelsaule. Biomed Tech (Berl). 2005;50(10):343–7.CrossRefGoogle Scholar
  30. 30.
    Kurtz S, Edidin A. Spine technology handbook. Amsterdam/Boston: Academic; 2006.Google Scholar
  31. 31.
    Louis W, Breck LW, Basom WC. The flexion treatment for low-back pain: indications, outline of conservative management, and a new spine-fusion procedure. J Bone Joint Surg Am. 1943;25:58–64.Google Scholar
  32. 32.
    Knowles FL. Apparatus for treatment of the spinal column. Patented I954 n.2677369.Google Scholar
  33. 33.
    Sénégas J. La ligamentoplastie intervertébrale, alternative à l’arthrodèse dans le traitement des instabilitiés dégénératives. Acta Orthop Belg. 1991;57 Suppl 1:221–6.PubMedGoogle Scholar
  34. 34.
    Sénégas J, Etchevers JP, Baulny D, Grenier F. Widening of the lumbar vertebral canal as an alter-native to laminectomy, in the treatment of lumbar stenosis. Fr J Orthop Surg. 1988;2:93–9.Google Scholar
  35. 35.
    Sénégas J, Vital JM, Guérin J, Bernard P, M’Barek M, Loreiro M, Bouvet R. Stabilisation lombaire souple. In: Gastambide D, editor. GlEDA: instabilités vertébrales lombaires. Paris: Expansion Scientifique Française; 1995. p. 122–32.Google Scholar
  36. 36.
    Pfirrman CWA, Metzdorf A, Zanetti M, Hadler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:4873–8.CrossRefGoogle Scholar
  37. 37.
    Taylor J, Ritland S. Technical and Anatomical Consideration fot the Placement of a Posterior Interspinous Stabilizer. H.M.Mayer (ed.) Minimally Invasive Spine Surgery Second Edition 2006:466–75.Google Scholar
  38. 38.
    Katz JN. Lumbar spinal fusion. Surgical rates, costs, and complications. Spine. 1995;20(24 Suppl):78S–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Sengupta OK. Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am. 2004;35(1):43–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Christie SD, Song JK, Fessler RG. Dynamic interspinous process technology. Spine. 2005;30(16 Suppl):S73–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Jerosch J, Moursi MG. Foreign body reaction due to polyethylene’s wear after implantation of an interspinal segment. Arch Orthop Trauma Surg. 2008;128(1):1–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Fairbank JC, Pynsent PB. The Oswestry disability index. Spine. 2000;25(22):2940–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, lmplicito DA, Martin MJ, Johnson 2nd DR, Skidmore GA, Vessa PP, Dwyer JW, Puccio S, Cauthen JC, Ozuna RM. A prospective randomized multi-center study for the treatment of lumbar spinal stenosis with the X-STOP interspinous implant: 1-year results. Eur Spine J. 2004;13(1):22–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, lmplicito DA, Martin MJ, Johnson 2nd DR, Skidmore GA, Vessa PP, Dwyer JW, Puccio ST, Cauthen JC, Ozuna RM. A multicenter, prospective, randomized trial evaluating the X-STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine. 2005;30(12):1351–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Schönström N, Lindahl S, Willen J, Hansson T. Dynamic changes in the dimension of the lumbar spinal canal: an experimental study in vitro. J Orthop Res. 1989;7(1):115–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Inufusa A, An HS, Lim TH, Hasegawa T, Haughton VM, Nowicki BH. Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine. 1996;21(21):2412–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Verhoof OJ, Bron JL, Wapstra FH, van Royen BJ. High failure rate of the interspinous distraction device (X-STOP) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17(2):188–92.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwarzenbach O, Berlemann U, Stoll TM, Dubois G. Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am. 2005;36(3):363–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Serkan I. Posterior dynamic stabilization of the lumbar spine. WSJ. 2007;1(2):62–7.Google Scholar
  50. 50.
    Khoueir P, Kim K, Wang M. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):E3.PubMedCrossRefGoogle Scholar
  51. 51.
    Whitesides TE. The effect of an interspinous implant on vertebral disc pressures (letter). Spine. 2003;28:1906–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Chiu JC. Interspinous process decompression (IPD) system (X-STOP) for the treatment of lumbar spinal stenosis. Surg Technol Int. 2006;15:265–75.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Christian Giannetti
    • 1
  • Rapahel Bartalesi
    • 2
  • Miria Tenucci
    • 1
  • Matteo Galgani
    • 1
  • Giuseppe Calvosa
    • 1
  1. 1.Department of Orthopaedics and TraumatologySanta Maria Maddalena HospitalVolterraItaly
  2. 2.Department of BioengineeringUniversity of PisaPisaItaly

Personalised recommendations