Skip to main content

Bone Substitution in Spine Fusion: The Past, the Present, and the Future

  • Chapter
  • First Online:

Abstract

Bone fusion represents a challenge in orthopedics practice, in particular when a pathological condition, such as non-union fractures, osteomyelitis, critical size defects, may imply a reduced biological response. This is why recently basic research has been addressing this issue and new and innovative products have been introduced into the clinical practice. Spinal fusion can be defined as the bony union between two vertebral bodies after surgical treatment. Each year in the USA, more than 200,000 spine fusions are performed. From 1993 to 2001, the rate of cervical spine fusion increased to 433 %, while the rate of thoracolumbar fusion increased from 52 to 352 %. Despite the advances in surgical techniques and the increasing use of stabilization systems, the incidence of nonunion for lumbar fusions remains high (10–40 %) [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Etminan M, Girardi FP, Khan SN, et al. Revision strategies for lumbar pseudarthrosis. Orthop Clin North Am. 2002;33:381–92.

    PubMed  Google Scholar 

  2. Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine (Phila Pa 1976). 2002;27(16 Suppl 1):S26–31.

    Google Scholar 

  3. Cowan JA, Dimick JB, Wainess R, Upchurch GR, Chandler WF, La Marca F. Changes in the utilization of spinal fusion in the United States. Neurosurgery. 2006;59:15–20.

    PubMed  Google Scholar 

  4. Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech. 2011;44(2):213–20.

    PubMed  Google Scholar 

  5. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38 Suppl 4:S3–6.

    Google Scholar 

  6. Axhausen G. Arch k1in Chir. 1909;88:23–28.

    Google Scholar 

  7. Phemister DB. Surg Gynecol Obstet. 1914;19:303–307.

    Google Scholar 

  8. Barth A. Die entstehung und das wachstum der freien gelenkkorper. Eine histologisch-klinische studie. Arch f Klin Chir. 1898;56:507–73.

    Google Scholar 

  9. Wigfield CC, Nelson RJ. Nonautologous interbody fusion materials in cervical spine surgery: how strong is the evidence to justify their use? Spine. 2001;26:687–94.

    PubMed  CAS  Google Scholar 

  10. Rawlinson JN. Morbidity after anterior cervical decompression and fusion. The influence of the donor site on recovery, and the results of a trial of surgibone compared to autologous bone. Acta Neurochir (Wien). 1994;131:106–18.

    CAS  Google Scholar 

  11. Khan SN, Cammisa Jr FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86.

    PubMed  Google Scholar 

  12. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am. 1995;77:1742–54.

    PubMed  CAS  Google Scholar 

  13. Laurencin CT, El-Amin SF. Xenotransplantation in orthopaedic surgery. J Am Acad Orthop Surg. 2008;16(1):4–8.

    PubMed  Google Scholar 

  14. Maatz R, Bauermeister A. A method of bone maceration. Results of animal experiments. J Bone Joint Surg Am. 1957;39:153–66.

    PubMed  Google Scholar 

  15. Lofgren H, Johannsson V, Olsson T, Ryd L, Levander B. Rigid fusion after cloward operation for cervical disc disease using autograft, allograft, or xenograft: a randomized study with radiostereometric and clinical follow-up assessment. Spine. 2000;25:1908–16.

    PubMed  CAS  Google Scholar 

  16. Malca SA, Roche PH, Rosset E, Pellet W. Cervical interbody xenograft with plate fixation: evaluation of fusion after 7 years of use in post-traumatic discoligamentous instability. Spine. 1996;21:685–90.

    PubMed  CAS  Google Scholar 

  17. Ramani PS, Kalbag RM, Sengupta RP. Cervical spinal interbody fusion with Kiel bone. Br J Surg. 1975;62:147–50.

    PubMed  CAS  Google Scholar 

  18. Savolainen S, Usenius JP, Hernesniemi J. Iliac crest versus artificial bone grafts in 250 cervical fusions. Acta Neurochir (Wien). 1994;129:54–7.

    CAS  Google Scholar 

  19. Siqueira EB, Kranzler LI. Cervical interbody fusion using calf bone. Surg Neurol. 1982;18:37–9.

    PubMed  CAS  Google Scholar 

  20. Beer M, Charalambides C, Cobb AG. Poor results after augmenting autograft with xenograft (surgibone) in hip revision surgery: a report of 27 cases. Acta Orthop. 2005;76(4):544–9.

    PubMed  Google Scholar 

  21. Lerner T, Bullmann V, Schulte TL, Schneider M, Liljenqvist U. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J. 2009;18(2):170–9.

    PubMed  Google Scholar 

  22. Boyan BD, McMillan J, Lohmann CH, Ranly DM, Schwartz Z. Bone graft substitutes: basic information for successful clinical use with special focus on synthetic graft substitutes. In: Laurencin CT, editor. Bone graft substitutes. West Conshohocken: ASTM International; 2003. p. 231–59.

    Google Scholar 

  23. Yamamuro T, Shikata J, Okumura H, et al. Replacement of lumbar vertebrae of sheep with ceramic prostheses. J Bone Joint Surg Br. 1990;72:889–93.

    PubMed  CAS  Google Scholar 

  24. Dai L, Jiang L. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up. Eur Spine J. 2008;17:698–705.

    PubMed  Google Scholar 

  25. Kim P, Wakai S, Matsuo S, Moriyama T, Kirino T. Bisegmental cervical interbody fusion using hydroxyapatite implants: surgical results and long-term observation in 70 cases. J Neurosurg. 1998;88:21–7.

    PubMed  CAS  Google Scholar 

  26. Suetsuna F, Yokoyama T, Kenuka E, Harata S. Anterior cervical fusion using porous hydroxyapatite ceramics for cervical disc herniation. A two-year follow-up. Spine J. 2001;1:348–57.

    PubMed  CAS  Google Scholar 

  27. Lowenstam HA, Weiner S. On biomineralization. New York: Oxford University Press; 1989.

    Google Scholar 

  28. Le Geros RZ. Calcium phosphates in oral biology and medicine. In: Myers KH, editor. Monographs in oral science, vol. 15. Basel: AG Publishers; 1991. p. 82–107.

    Google Scholar 

  29. Korovessis P, Repantis T, Petsinis G, Iliopoulos P, Hadjipavlou A. Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine (Phila Pa 1976). 2008;33(4):E100–8.

    Google Scholar 

  30. Bigi A, Foresti E, Gregoriani R, Ripamonti A, Roveri N, Shah JS. The role of magnesium on the structure of biological apatite. Calcif Tissue Int. 1992;50:439–44.

    PubMed  CAS  Google Scholar 

  31. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N. Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem. 1993;49:69–78.

    CAS  Google Scholar 

  32. TenHuisen KS, Brown PW. Effects of magnesium on the formation of calcium deficient hydroxyapatite from CaHPO4 · 2H2O and Ca4(PO4)2O. J Biomed Mater Res. 1997;36:306–14.

    PubMed  CAS  Google Scholar 

  33. Rey C, Renugopalakrishnan V, Collins B, Glimcher M. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int. 1991;49:251–8.

    PubMed  CAS  Google Scholar 

  34. Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G. Biomimetic Mg- and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceramic Soc. 2006;26:2593–601.

    CAS  Google Scholar 

  35. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med. 2008;19:239–47.

    PubMed  CAS  Google Scholar 

  36. Hillmeier J, et al. Augmentation von Wirbelkörperfrakturen mit einem neuen Calciumphosphate-Zement nach Ballon-Kphoplastie. Orthopade. 2004;33(1):31–9.

    PubMed  CAS  Google Scholar 

  37. Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007;16(5):601–10.

    PubMed  Google Scholar 

  38. Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ. Histologic changes after vertebroplasty. J Bone Joint Surg Am. 2004;86:1230–8.

    PubMed  Google Scholar 

  39. Chow LC, Takagi S, Constantino PD. Self-setting calcium phosphate cements. Mat Res Soc Symp Proc. 1991;179:1–24.

    Google Scholar 

  40. Driessens FC, Planell JA, Gil FJ. Calcium phosphate bone cements. In: Wise DL et al., editors. Encyclopedic handbook of biomaterials and bioengineering part B, applications, vol. 2. New York: Marcel Dekker; 1995. p. 855–77.

    Google Scholar 

  41. Toyone T, Tanaka T, Kato D, Kaneyama R, Otsuka M. The treatment of acute thoracolumbar burst fractures with transpedicular intracorporeal hydroxyapatite grafting following indirect reduction and pedicle screw fixation: a prospective study. Spine. 2006;31:E208–14.

    PubMed  Google Scholar 

  42. Lim TH, Brebach GT, Renner SM, Kim WJ, Kim JG, Lee RE, et al. Biomechanical evaluation of an injectable calcium phosphate treatment of acute thoracolumbar burst fractures with kyphoplasty an intracorporeal grafting with calcium phosphate: a prospective study. Spine. 2002;27:1297–302.

    PubMed  Google Scholar 

  43. Tomita S, Molloy S, Jasper LE, Abe M, Belkoff SM. Biomechanical comparison of kyphoplasty with different bone cements. Spine. 2004;29:1203–7.

    PubMed  Google Scholar 

  44. Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short segment pedicle screw fixation. Neurosurgery. 2003;53:1354–61.

    PubMed  Google Scholar 

  45. Gelb H, Schumacher HR, Cuckler J, Ducheyne P, Baker DG. In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology and surface area. J Orthop Res. 1994;12:83–92.

    PubMed  CAS  Google Scholar 

  46. San Millán Ruíz D, Burkhardt K, Jean B, Muster M, Martin JB, Bouvier J, et al. Pathology findings with acrylic implants. Bone. 1999;25:85S–90.

    PubMed  Google Scholar 

  47. Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine. 1999;24:1521–6.

    PubMed  CAS  Google Scholar 

  48. Dujovny M, Aviles A, Agner C. An innovative approach for cranioplasty using hydroxyapatite cement. Surg Neurol. 1997;48:294–7.

    PubMed  CAS  Google Scholar 

  49. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    PubMed  Google Scholar 

  50. Ooms EM, Wolke JG, van der Waerden JP, Jansen JA. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res. 2002;61:9–18.

    PubMed  CAS  Google Scholar 

  51. Verlaan JJ, van Helden WH, Oner FC, Verbout AJ, Dhert WJ. Balloon vertebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures. Spine. 2002;27:543–8.

    PubMed  CAS  Google Scholar 

  52. Korovessis P, Repantis T, George P. Treatment of acute thoracolumbar burst fractures with kyphoplasty and short pedicle screw fixation: transpedicular intracorporeal grafting with calcium phosphate: a prospective study. Indian J Orthop. 2007;41(4):354–61.

    PubMed  Google Scholar 

  53. Blattert TR, Jestaedt L, Weckbach A. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine (Phila Pa 1976). 2009;34(2):108–14.

    Google Scholar 

  54. Yoon ST, Boden SD. Spine fusion by gene therapy. Gene Ther. 2004;11(4):360–7.

    PubMed  CAS  Google Scholar 

  55. Baltzer AW, Lieberman JR. Regional gene therapy to enhance bone repair. Gene Ther. 2004;11(4):344–50.

    PubMed  CAS  Google Scholar 

  56. Pneumaticos SG, Triantafyllopoulos GK, Chatziioannou S, Basdra EK, Papavassiliou AG. Biomolecular strategies of bone augmentation in spinal surgery. Trends Mol Med. 2011;17(4):215–22.

    PubMed  CAS  Google Scholar 

  57. Lattanzi W, Pola E, Pecorini G, Logroscino CA, Robbins PD. Gene therapy for in vivo bone formation: recent advances. Eur Rev Med Pharmacol Sci. 2005;9(3):167–74.

    PubMed  CAS  Google Scholar 

  58. Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G, Stigliano E, Tampieri A, Bedini R, Pecci R, Michetti F, Gambotto A, Robbins PD, Pola E. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther. 2008;15(19):1330–43. PubMed PMID: 18633445.

    PubMed  CAS  Google Scholar 

  59. Parrilla C, Saulnier N, Bernardini C, Patti R, Tartaglione T, Fetoni AR, Pola E, Paludetti G, Michetti F, Lattanzi W. Undifferentiated human adipose tissue-derived stromal cells induce mandibular bone healing in rats. Arch Otolaryngol Head Neck Surg. 2011;137(5):463–70.

    PubMed  Google Scholar 

  60. Gómez-Barrena E, Rosset P, Müller I, Giordano R, Bunu C, Layrolle P, Konttinen YT, Luyten FP. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med. 2011;15(6):1266–86.

    PubMed  Google Scholar 

  61. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5.

    PubMed  CAS  Google Scholar 

  62. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    PubMed  CAS  Google Scholar 

  63. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.

    PubMed  Google Scholar 

  64. Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001;68(4–5):245–53.

    PubMed  CAS  Google Scholar 

  65. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    PubMed  CAS  Google Scholar 

  66. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.

    PubMed  CAS  Google Scholar 

  67. Saulnier N, Lattanzi W, Puglisi MA, Pani G, Barba M, Piscaglia AC, Giachelia M, Alfieri S, Neri G, Gasbarrini G, Gasbarrini A. Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci. 2009;13 Suppl 1:71–8.

    PubMed  Google Scholar 

  68. Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem. 2012;113(5):1460–9.

    PubMed  CAS  Google Scholar 

  69. Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010;14(9):2190–9.

    PubMed  Google Scholar 

  70. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA. 2002;99(13):8932–7.

    PubMed  CAS  Google Scholar 

  71. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004;303(5661):1198–201.

    PubMed  CAS  Google Scholar 

  72. Huang JW, Lin SS, Chen LH, Liu SJ, Niu CC, Yuan LJ, Wu CC, Chen WJ. The use of fluorescence-labeled mesenchymal stem cells in poly(lactide-co-glycolide)/hydroxyapatite/collagen hybrid graft as a bone substitute for posterolateral spinal fusion. J Trauma. 2011;70(6):1495–502.

    PubMed  CAS  Google Scholar 

  73. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    PubMed  CAS  Google Scholar 

  74. Zaim M, Karaman S, Cetin G, Isik S. Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol. 2012;91(8):1175–86.

    PubMed  Google Scholar 

  75. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    PubMed  CAS  Google Scholar 

  76. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23(3):412–23.

    PubMed  CAS  Google Scholar 

  77. Saulnier N, Puglisi MA, Lattanzi W, Castellini L, Pani G, Leone G, Alfieri S, Michetti F, Piscaglia AC, Gasbarrini A. Gene profiling of bone marrow- and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation. Cytotherapy. 2011;13(3):329–40.

    PubMed  CAS  Google Scholar 

  78. Gimble JM, Bunnell BA, Chiu ES, Guilak F. Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells. 2011;29(5):749–54.

    PubMed  Google Scholar 

  79. Riew KD, Wright NM, Cheng S, Avioli LV, Lou J. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int. 1998;63(4):357–60.

    PubMed  CAS  Google Scholar 

  80. Cheng SL, Lou J, Wright NM, Lai CF, Avioli LV, Riew KD. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int. 2001;68(2):87–94.

    PubMed  CAS  Google Scholar 

  81. Cui Q, Ming Xiao Z, Balian G, Wang GJ. Comparison of lumbar spine fusion using mixed and cloned marrow cells. Spine (Phila Pa 1976). 2001;26(21):2305–10.

    CAS  Google Scholar 

  82. Hidaka C, Goshi K, Rawlins B, Boachie-Adjei O, Crystal RG. Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine (Phila Pa 1976). 2003;28(18):2049–57.

    Google Scholar 

  83. Orii H, Sotome S, Chen J, Wang J, Shinomiya K. Beta-tricalcium phosphate (beta-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. J Med Dent Sci. 2005;52(1):51–7.

    PubMed  Google Scholar 

  84. Kruyt MC, Wilson CE, de Bruijn JD, van Blitterswijk CA, Oner CF, Verbout AJ, Dhert WJ. The effect of cell-based bone tissue engineering in a goat transverse process model. Biomaterials. 2006;27(29):5099–106.

    PubMed  CAS  Google Scholar 

  85. Miyazaki M, Sugiyama O, Tow B, Zou J, Morishita Y, Wei F, Napoli A, Sintuu C, Lieberman JR, Wang JC. The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Spinal Disord Tech. 2008;21(5):372–9.

    PubMed  Google Scholar 

  86. Miyazaki M, Sugiyama O, Zou J, Yoon SH, Wei F, Morishita Y, Sintuu C, Virk MS, Lieberman JR, Wang JC. Comparison of lentiviral and adenoviral gene therapy for spinal fusion in rats. Spine (Phila Pa 1976). 2008;33(13):1410–7.

    Google Scholar 

  87. Kim HJ, Park JB, Lee JK, Park EY, Park EA, Riew KD, Rhee SK. Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. Eur Spine J. 2008;17(11):1515–21.

    PubMed  Google Scholar 

  88. Fu TS, Chen WJ, Chen LH, Lin SS, Liu SJ, Ueng SW. Enhancement of posterolateral lumbar spine fusion using low-dose rhBMP-2 and cultured marrow stromal cells. J Orthop Res. 2009;27(3):380–4.

    PubMed  Google Scholar 

  89. Rao RD, Gourab K, Bagaria VB, Shidham VB, Metkar U, Cooley BC. The effect of platelet-rich plasma and bone marrow on murine posterolateral lumbar spine arthrodesis with bone morphogenetic protein. J Bone Joint Surg Am. 2009;91(5):1199–206.

    PubMed  Google Scholar 

  90. Fu TS, Ueng SW, Tsai TT, Chen LH, Lin SS, Chen WJ. Effect of hyperbaric oxygen on mesenchymal stem cells for lumbar fusion in vivo. BMC Musculoskelet Disord. 2010;11:52.

    PubMed  CAS  Google Scholar 

  91. Giannicola G, Ferrari E, Citro G, Sacchetti B, Corsi A, Riminucci M, Cinotti G, Bianco P. Graft vascularization is a critical rate-limiting step in skeletal stem cell-mediated posterolateral spinal fusion. J Tissue Eng Regen Med. 2010;4(4):273–83.

    PubMed  Google Scholar 

  92. Geuze RE, Prins HJ, Öner FC, van der Helm YJ, Schuijff LS, Martens AC, Kruyt MC, Alblas J, Dhert WJ. Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats. Tissue Eng Part A. 2010;16(11):3343–51.

    PubMed  CAS  Google Scholar 

  93. Douglas JT, Rivera AA, Lyons GR, Lott PF, Wang D, Zayzafoon M, Siegal GP, Cao X, Theiss SM. Ex vivo transfer of the Hoxc-8-interacting domain of Smad1 by a tropism-modified adenoviral vector results in efficient bone formation in a rabbit model of spinal fusion. J Spinal Disord Tech. 2010;23(1):63–73.

    PubMed  Google Scholar 

  94. Johnson JS, Meliton V, Kim WK, Lee KB, Wang JC, Nguyen K, Yoo D, Jung ME, Atti E, Tetradis S, Pereira RC, Magyar C, Nargizyan T, Hahn TJ, Farouz F, Thies S, Parhami F. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J Cell Biochem. 2011;112(6):1673–84.

    PubMed  CAS  Google Scholar 

  95. Abbah SA, Lam CX, Ramruttun AK, Goh JC, Wong HK. Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow-derived multipotent stromal cells in biodegradable scaffolds: a comparative study in a large animal model of anterior lumbar interbody fusion. Spine (Phila Pa 1976). 2011;36(21):1752–9.

    Google Scholar 

  96. Hsu WK, Wang JC, Liu NQ, Krenek L, Zuk PA, Hedrick MH, Benhaim P, Lieberman JR. Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg Am. 2008;90(5):1043–52.

    PubMed  Google Scholar 

  97. Sheyn D, Pelled G, Zilberman Y, Talasazan F, Frank JM, Gazit D, Gazit Z. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells. 2008;26(4):1056–64.

    PubMed  Google Scholar 

  98. Lopez MJ, McIntosh KR, Spencer ND, Borneman JN, Horswell R, Anderson P, Yu G, Gaschen L, Gimble JM. Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model. J Orthop Res. 2009;27(3):366–73.

    PubMed  Google Scholar 

  99. McIntosh KR, Lopez MJ, Borneman JN, Spencer ND, Anderson PA, Gimble JM. Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A. 2009;15(9):2677–86.

    PubMed  CAS  Google Scholar 

  100. Vergroesen PP, Kroeze RJ, Helder MN, Smit TH. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromol Biosci. 2011;11(6):722–30.

    PubMed  CAS  Google Scholar 

  101. Tang ZB, Cao JK, Wen N, Wang HB, Zhang ZW, Liu ZQ, Zhou J, Duan CM, Cui FZ, Wang CY. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model. J Tissue Eng Regen Med. 2012;6(4):325–36.

    PubMed  CAS  Google Scholar 

  102. Miyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y, Sintuu C, Wang JC. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine (Phila Pa 1976). 2008;33(8):863–9.

    Google Scholar 

  103. Gimble JM, Bunnell BA, Chiu ES, Guilak F. Taking stem cells beyond discovery: a milestone in the reporting of regulatory requirements for cell therapy. Stem Cells Dev. 2011;20(8):1295–6.

    PubMed  Google Scholar 

  104. Olabisi RM, Lazard Z, Heggeness MH, Moran KM, Hipp JA, Dewan AK, Davis AR, West JL, Olmsted-Davis EA. An injectable method for noninvasive spine fusion. Spine J. 2011;11(6):545–56.

    PubMed  Google Scholar 

  105. Parrilla C, Lattanzi W, Rita Fetoni A, Bussu F, Pola E, Paludetti G. Ex vivo gene therapy using autologous dermal fibroblasts expressing hLMP3 for rat mandibular bone regeneration. Head Neck. 2010;32(3):310–8.

    PubMed  Google Scholar 

  106. Lattanzi W, Bernardini C. Genes and molecular pathways of the osteogenic process. In: Yunfeng Lin, editor. Osteogenesis. InTech; 2012. ISBN:978-953-51-0030-0. Available from: http://www.intechopen.com/books/osteogenesis/genes-and-molecular-pathways-of-the-osteogenic-process.

  107. Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005;16(3):251–63.

    PubMed  CAS  Google Scholar 

  108. Wu X, Shi W, Cao X. Multiplicity of BMP signaling in skeletal development. Ann N Y Acad Sci. 2007;1116:29–49.

    PubMed  CAS  Google Scholar 

  109. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994;127(6 Pt 1):1755–66.

    PubMed  CAS  Google Scholar 

  110. Okamoto M, Murai J, Yoshikawa H, Tsumaki N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res. 2006;21(7):1022–33.

    PubMed  CAS  Google Scholar 

  111. Pham L, Beyer K, Jensen ED, Rodriguez JS, Davydova J, Yamamoto M, Petryk A, Gopalakrishnan R, Mansky KC. Bone morphogenetic protein 2 signaling in osteoclasts is negatively regulated by the BMP antagonist, twisted gastrulation. J Cell Biochem. 2011;112(3):793–803.

    PubMed  CAS  Google Scholar 

  112. Bahamonde ME, Lyons KM. BMP3: to be or not to be a BMP. J Bone Joint Surg Am. 2001;83-A(Suppl 1(Pt 1)):S56–62.

    PubMed  Google Scholar 

  113. Balint E, Lapointe D, Drissi H, van der Meijden C, Young DW, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem. 2003;89(2):401–26.

    PubMed  CAS  Google Scholar 

  114. Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003;24(2):218–35.

    PubMed  CAS  Google Scholar 

  115. Evans C. Gene therapy for the regeneration of bone. Injury. 2011;42(6):599–604.

    PubMed  Google Scholar 

  116. Hwang CJ, Vaccaro AR, Lawrence JP, Hong J, Schellekens H, Alaoui-Ismaili MH, Falb D. Immunogenicity of bone morphogenetic proteins. J Neurosurg Spine. 2009;10(5):443–51.

    PubMed  Google Scholar 

  117. Alaoui-Ismaili MH, Falb D. Design of second generation therapeutic recombinant bone morphogenetic proteins. Cytokine Growth Factor Rev. 2009;20(5–6):501–7.

    PubMed  CAS  Google Scholar 

  118. Alden TD, Pittman DD, Beres EJ, Hankins GR, Kallmes DF, Wisotsky BM, Kerns KM, Helm GA. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg. 1999;90(1 Suppl):109–14.

    PubMed  CAS  Google Scholar 

  119. Zhao J, Zhao DY, Shen AG, Liu F, Zhang F, Sun Y, Wu HF, Lu CF, Shi HG. Promoting lumbar spinal fusion by adenovirus-mediated bone morphogenetic protein-4 gene therapy. Chin J Traumatol. 2007;10(2):72–6.

    PubMed  CAS  Google Scholar 

  120. Laurent JJ, Webb KM, Beres EJ, McGee K, Li J, van Rietbergen B, Helm GA. The use of bone morphogenetic protein-6 gene therapy for percutaneous spinal fusion in rabbits. J Neurosurg Spine. 2004;1(1):90–4.

    PubMed  Google Scholar 

  121. Helm GA, Alden TD, Beres EJ, Hudson SB, Das S, Engh JA, Pittman DD, Kerns KM, Kallmes DF. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg. 2000;92(2 Suppl):191–6.

    PubMed  CAS  Google Scholar 

  122. Sheyn D, Kallai I, Tawackoli W, Cohn Yakubovich D, Oh A, Su S, Da X, Lavi A, Kimelman-Bleich N, Zilberman Y, Li N, Bae H, Gazit Z, Pelled G, Gazit D. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm. 2011;8(5):1592–601.

    PubMed  CAS  Google Scholar 

  123. Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K, Wang JC. The osteoinductive properties of nell-1 in a rat spinal fusion model. Spine J. 2007;7(1):50–60.

    PubMed  Google Scholar 

  124. Kim HS, Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H, Minamide A, Suh DY, Titus L. Overcoming the immune response to permit ex vivo gene therapy for spine fusion with human type 5 adenoviral delivery of the LIM mineralization protein-1 cDNA. Spine (Phila Pa 1976). 2003;28(3):219–26.

    Google Scholar 

  125. Ting K, Vastardis H, Mulliken JB, Soo C, Tieu A, Do H, Kwong E, Bertolami CN, Kawamoto H, Kuroda S, Longaker MT. Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res. 1999;14(1):80–9.

    PubMed  CAS  Google Scholar 

  126. Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C. Nell-1-induced bone regeneration in calvarial defects. Am J Pathol. 2006;169(3):903–15.

    PubMed  CAS  Google Scholar 

  127. Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine (Phila Pa 1976). 1998;23(23):2486–92.

    CAS  Google Scholar 

  128. Bernardini C, Saulnier N, Parrilla C, Pola E, Gambotto A, Michetti F, Robbins PD, Lattanzi W. Early transcriptional events during osteogenic differentiation of human bone marrow stromal cells induced by Lim mineralization protein 3. Gene Expr. 2010;15(1):27–42.

    PubMed  CAS  Google Scholar 

  129. Minamide A, Boden SD, Viggeswarapu M, Hair GA, Oliver C, Titus L. Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J Bone Joint Surg Am. 2003;85-A(6):1030–9.

    PubMed  Google Scholar 

  130. Strohbach CA, Rundle CH, Wergedal JE, Chen ST, Linkhart TA, Lau KH, Strong DD. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcif Tissue Int. 2008;83(3):202–11. PubMed PMID: 18709396.

    PubMed  CAS  Google Scholar 

  131. Wang X, Cui F, Madhu V, Dighe AS, Balian G, Cui Q. Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation. Growth Factors. 2011;29(1):36–48. PubMed PMID: 21222516.

    PubMed  Google Scholar 

  132. Yoon ST, Park JS, Kim KS, Li J, Attallah-Wasif ES, Hutton WC, Boden SD. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine (Phila Pa 1976). 2004;29(23):2603–11. PubMed PMID: 15564908.

    Google Scholar 

  133. Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H, Kim HS, Mayr MT, Hutton WC, Titus L. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am. 2001;83-A(3):364–76. PubMed PMID: 11263640.

    PubMed  CAS  Google Scholar 

  134. Lattanzi W, Barba M, Novegno F, Massimi L, Tesori V, Tamburrini G, Galgano S, Bernardini C, Caldarelli M, Michetti F, Di Rocco C. Lim mineralization protein is involved in the premature calvarial ossification in sporadic craniosynostoses. Bone. 2013;52(1):474–84. doi:10.1016/j.bone.2012.09.004.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giandomenico Logroscino MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Logroscino, G., Lattanzi, W. (2014). Bone Substitution in Spine Fusion: The Past, the Present, and the Future. In: Menchetti, P. (eds) Minimally Invasive Surgery of the Lumbar Spine. Springer, London. https://doi.org/10.1007/978-1-4471-5280-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5280-4_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5279-8

  • Online ISBN: 978-1-4471-5280-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics