Flow Perturbation Experiments

  • Branko Furst


On account of relative ease of accessibility, the early embryo circulation is an eminently suitable model, which can help unravel the age-old question of the relative importance of the peripheral circulation, versus that of the heart. Its “simplified” morphological plan, i.e., the absence of valves and lack of innervation, serves as additional advantages over its mature counterpart. Finally, the embryonic and extraembryonic circulations occur on a single plane, rendering the force of gravity almost negligible, in comparison to a horizontally placed animal or vertically oriented human circulatory system. We will now examine several studies where the fundamental question of heart versus circulation has been addressed by the investigators.


Atrial Natriuretic Peptide Chick Embryo Peak Systolic Velocity Circulate Blood Volume Human Circulatory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hove JR, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Hove JAYR. Quantifying cardiovascular flow dynamics during early development. Pediatr Res. 2006;60(1):6.PubMedCrossRefGoogle Scholar
  3. 3.
    Orts LF, Puerta FJ, Sobrado PJ. The morphogenesis of the ventricular flow pathways in man. Arch Anat Histol Embryol. 1980;63:5.Google Scholar
  4. 4.
    Warren KS, et al. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):939.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen JN, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123(1):293.PubMedGoogle Scholar
  6. 6.
    Broekhuizen M, et al. Altered hemodynamics in chick embryos after extraembryonic venous obstruction. Ultrasound Obstet Gynecol. 1999;13(6):437–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Hogers B, et al. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997;80(4):473.PubMedCrossRefGoogle Scholar
  8. 8.
    Stekelenburg-de Vos S, et al. Acutely altered hemodynamics following venous obstruction in the early chick embryo. J Exp Biol. 2003;206(6):1051.PubMedCrossRefGoogle Scholar
  9. 9.
    Ursem NTC, et al. Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction. J Exp Biol. 2004;207(9):1487.PubMedCrossRefGoogle Scholar
  10. 10.
    Wagman A, Hu N, Clark EB. Effect of changes in circulating blood volume on cardiac output and arterial and ventricular blood pressure in the stage 18, 24, and 29 chick embryo. Circ Res. 1990;67(1):187–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Houweling AC, et al. Developmental pattern of ANF gene expression reveals a strict localization of cardiac chamber formation in chicken. Anat Rec. 2002;266(2):93–102.PubMedCrossRefGoogle Scholar
  12. 12.
    Toshimori H, et al. Chicken atrial natriuretic peptide (chANP) and its secretion. Cell Tissue Res. 1990;259(2):293–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakazawa M, et al. Effect of atrial natriuretic peptide on hemodynamics of the stage 21 chick embryo. Pediatr Res. 1990;27(6):557.PubMedCrossRefGoogle Scholar
  14. 14.
    Hu N, et al. Effect of atrial natriuretic peptide on diastolic filling in the stage 21 chick embryo. Pediatr Res. 1995;37(4):465.PubMedCrossRefGoogle Scholar
  15. 15.
    Bowers PN, Tinney JP, Keller BB. Nitroprusside selectively reduces ventricular preload in the stage 21 chick embryo. Cardiovasc Res. 1996;31(supp1):E132.PubMedCrossRefGoogle Scholar
  16. 16.
    Li K, Sirois P, Rouleau J. Role of endothelial cells in cardiovascular function. Life Sci. 1994;54(9):579–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Yanagisawa M, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Inoue A, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989;86(8):2863.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Department of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations