Skip to main content

Advances in the Use of Latent Finger Marks

  • Chapter
  • First Online:
Essentials of Autopsy Practice

Abstract

The enhancement and visualization of latent finger marks deposited at the scene of a crime remains the most effective means of identifying an offender by forensic science and hence of solving the crime. In this chapter, we consider recent advances in the visualization of latent finger marks deposited as secretions of sweat and the implications of this on the recovery of other evidence types, such as DNA. We focus on deposits onto surfaces that are likely to be encountered by the pathologist at the crime scene or postmortem examination. These surfaces include fabric, leather, metal, and skin, some of which have traditionally been known to be problematic in enhancing finger mark deposits. Many of the techniques described here are developments of existing technology, while others are entirely new methods of enhancing and visualizing finger mark deposits. Finally, an overview of other recent advances in finger mark visualization is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faulds H. On the skin-furrows of the hand. Nature. 1880;22:605.

    Article  Google Scholar 

  2. Herschel WJ. Skin furrows of the hand. Nature. 1880;23:76.

    Article  Google Scholar 

  3. Berry J, Stoney DA. History and development of fingerprinting. In: Lee HC, Gaensslen RE, editors. Advances in fingerprint technology. New York: Elsevier; 2001. p. 2–40.

    Google Scholar 

  4. Police Standards Unit. Forensic performance monitors. London: Home Office; 2005.

    Google Scholar 

  5. Thomas GL. The physics of fingerprints and their detection. J Phys E: Sci Instrum. 1978;11:722–31.

    Article  CAS  Google Scholar 

  6. McCartney C. Forensic identification and criminal justice. Devon: Willan; 2006. p. 1–30.

    Google Scholar 

  7. Kuchen M, Newell AC. A model for fingerprint formation. Europhys Lett. 2004;68:141–6.

    Article  Google Scholar 

  8. Mapelli M, Colpi M, Possenti A, Sigurdsson S. The fingerprint of binary intermediate-mass black holes in globular clusters: suprathermal stars and angular momentum alignment. Mon Not R Astro Soc. 2005;364:1315–26.

    Article  Google Scholar 

  9. Ramotowski RS. Composition of latent print residue. In: Lee HC, Gaensslen RE, editors. Advances in fingerprint technology. New York: Elsevier; 2001. p. 63–104.

    Google Scholar 

  10. Croxton RS, Baron MG, Butler D, Kent T, Sears VG. Development of a GC-MS method for the simultaneous analysis of latent fingerprint components. J Forensic Sci. 2006;51:1329–33.

    Article  PubMed  CAS  Google Scholar 

  11. Champod C, Lennard C, Margot P, Stoilovic M. Fingerprints and other ridge skin impressions. New York: CRC Press; 2004.

    Book  Google Scholar 

  12. Bowman V, editor. Manual of fingerprint development techniques. Sandridge: Home Office Police Scientific Development Branch; 2004.

    Google Scholar 

  13. Becue C, Moret S, Champod C, Margot P. Use of stains to detect fingermarks. Biotech Histochem. 2011;86:140–60.

    Article  PubMed  CAS  Google Scholar 

  14. Fraser J, Sturrock K, Deacon P, Bleay S, Bremner DH. Visualisation of fingermarks and grab impressions on fabrics. Part 1: gold/zinc vacuum metal deposition. Forensic Sci Int. 2011;208:74–8.

    Article  PubMed  CAS  Google Scholar 

  15. Philipson D, Bleay S. Alternative metal processes for vacuum metal deposition. J Forensic Ident. 2007;57:252–73.

    Google Scholar 

  16. I-Heng Y, Shyankay J, Chin-Min C, Kuang-Chuan W, Lei-Jang P, Jeh S. Development of latent fingerprint by ZnO deposition. Forensic Sci Int. 2011;207:14–8.

    Article  Google Scholar 

  17. Farrugia KJ, Savage KA, Bandey H, NicDaéid N. Chemical enhancement of footwear impressions in blood on fabric – part 1: protein stains. Sci Justice. 2011;51:99–109.

    Article  PubMed  CAS  Google Scholar 

  18. Farrugia KJ, Savage KA, Bandey H, Ciuksza T, NicDaéid N. Chemical enhancement of footwear impressions in blood on fabric — part 2: peroxidase reagents. Sci Justice. 2011;51:110–21.

    Article  PubMed  CAS  Google Scholar 

  19. Farrugia KJ, Bandey H, Savage KA, NicDaéid N. Chemical enhancement of footwear impressions in blood on fabric — part 3: amino acid staining. Sci Justice. 2012;53:8–13; http://dx.doi.org/10.1016/j.scijus.2012.08.003.

    Article  PubMed  Google Scholar 

  20. Farrugia KJ, NicDaéid N, Savage KA, Bandey H. Chemical enhancement of footwear impressions in blood deposited on fabric — evaluating the use of alginate casting materials followed by chemical enhancement. Sci Justice. 2010;50:200–4.

    Article  PubMed  CAS  Google Scholar 

  21. Farrugia KJ, Bandey H, Bleay S. NicDaéid N. Chemical enhancement of footwear impressions in urine on fabric. Forensic Sci Int. 2012;214:67–81.

    Article  PubMed  CAS  Google Scholar 

  22. Farrugia KJ, Bandey H, Dawson L, NicDaéid N. Chemical enhancement of soil based footwear impressions on fabric. Forensic Sci Int. 2012;219:12–28.

    Article  PubMed  CAS  Google Scholar 

  23. Trapecar M, Balazic J. Fingerprint recovery from human skin surfaces. Sci Justice. 2007;47:136–40.

    Article  PubMed  CAS  Google Scholar 

  24. Trapecar M. Lifting techniques for finger marks on human skin previous enhancement by Swedish black powder — a preliminary study. Sci Justice. 2009;49:292–5.

    Article  PubMed  Google Scholar 

  25. Drahansky M, Dolezel M, Urbanek J. Influence of skin diseases on fingerprint recognition. J Biomed Biotechnol. 2012;2012:626148. doi:10.1155/2012/626148.

    Article  PubMed  Google Scholar 

  26. Bersellini C, Garofano L, Giannetto M, Lusardi F, Mori G. Development of latent fingerprints on metallic surfaces using electropolymerization processes. J Forensic Sci. 2001;46:871–7.

    PubMed  CAS  Google Scholar 

  27. Beresford AL, Hillman AR. Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Anal Chem. 2010;82:483–6.

    Article  PubMed  CAS  Google Scholar 

  28. Beresford AL, Brown RM, Hillman AR, Bond JW. Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. J Forensic Sci. 2012;57:93–102.

    Article  PubMed  CAS  Google Scholar 

  29. Trethewey KR, Chamberlain J. Corrosion for science and engineering. Harlow: Longman Scientific; 1995. p. 1–22.

    Google Scholar 

  30. Jensen O. ‘Rusters’. The corrosive action of palmar sweat I. Sodium chloride in sweat. Acta Dermatovenerol. 1979;59:135–8.

    CAS  Google Scholar 

  31. Jensen O, Nielsen E. ‘Rusters’. The corrosive action of palmar sweat II. Physical and chemical factors in palmar hyperhidrosis. Acta Derm Venereol. 1979;59:139–43.

    PubMed  CAS  Google Scholar 

  32. Burton JL, Pye RJ, Brookes DB. Metal corrosion by chloride in sweat. Br J Dermatol. 1976;95:417–22.

    Article  PubMed  CAS  Google Scholar 

  33. Williams G, McMurray HN, Worsley DA. Latent fingerprint detection using a scanning Kelvin microprobe. J Forensic Sci. 2001;46:1085–92.

    PubMed  CAS  Google Scholar 

  34. Williams G, McMurray N. Latent fingermark visualization using a scanning Kelvin probe. Forensic Sci Int. 2007;167:102–9.

    Article  PubMed  CAS  Google Scholar 

  35. Williams G. Visualization of fingerprints on metal surfaces using a scanning Kelvin probe. Fingerprint Whorld. 2010;36:51–60.

    Google Scholar 

  36. Halliday D, Resnick R, Krane KS. Physics. New York: Wiley; 2002. p. 1103–27.

    Google Scholar 

  37. Bond JW. Visualization of latent fingerprint corrosion of metallic surfaces. J Forensic Sci. 2008;53:812–22.

    Article  PubMed  CAS  Google Scholar 

  38. Bond JW. The thermodynamics of latent fingerprint corrosion of metal elements and alloys. J Forensic Sci. 2008;53:1344–52.

    PubMed  CAS  Google Scholar 

  39. Wightman G, O’Connor D. The thermal visualization of latent fingermarks on metallic surfaces. Forensic Sci Int. 2010;204:88–96.

    Article  PubMed  Google Scholar 

  40. Bond JW, Eliopulos LA, Brady TF. Visualization of latent finger mark corrosion of brass, climatic influence in a comparison between the UK and Iraq. J Forensic Sci. 2011;56:506–9.

    Article  PubMed  Google Scholar 

  41. Kosec T, Merl DK, Milosev I. Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution. Corrosion Sci. 2008;50:1987–97.

    Article  CAS  Google Scholar 

  42. Nelkon M, Parker P. Advanced level physics. Portsmouth: Heinemann; 1974.

    Google Scholar 

  43. Bond JW. Optical enhancement of fingerprint deposits on brass using digital colour mapping. J Forensic Sci. 2011;56:1285–8.

    Article  PubMed  Google Scholar 

  44. Bond JW. On the electrical characteristics of latent finger mark corrosion of brass. J Phys D: Appl Phys. 2008;41:125502. doi:10.1088/0022-3727/41/12/125502.

    Article  Google Scholar 

  45. Given BW. Latent fingerprints on cartridges and expended cartridge cases. J Forensic Sci. 1976;21:587–92.

    PubMed  CAS  Google Scholar 

  46. Cantu AA, Leben DA, Ramotowski R, Kopera J, Simms JR. Use of acidified hydrogen peroxide to remove excess gun blue from gun blue treated cartridge cases and to develop latent prints on untreated cartridge cases. J Forensic Sci. 1998;43:294–8.

    CAS  Google Scholar 

  47. Migron Y, Mandler D. Development of latent fingerprints on unfired cartridges by palladium deposition: a surface study. J Forensic Sci. 1997;42:986–92.

    CAS  Google Scholar 

  48. Migron Y, Hocherman G, Springer E, Almog J, Mandler D. Visualization of sebaceous fingerprints on fired cartridge cases: a laboratory study. J Forensic Sci. 1998;43:543–8.

    PubMed  CAS  Google Scholar 

  49. Bond JW, Heidel C. Visualization of latent fingerprint corrosion on a discharged brass shell casing. J Forensic Sci. 2009;54:892–4.

    Article  PubMed  CAS  Google Scholar 

  50. Bond JW, Brady TF. Physical characterization and recovery of corroded fingerprint impressions from post-blast copper pipe bomb fragments. J Forensic Sci. 2013;58:776–81.

    Article  PubMed  Google Scholar 

  51. Worley CG, Wiltshire SS, Miller TC, Havrilla GJ, Majidi V. Detection of visible and latent fingerprints using micro-x-ray fluorescence elemental imaging. J Forensic Sci. 2006;51:57–63.

    Article  PubMed  CAS  Google Scholar 

  52. Heilbron JL, Moseley HGJ. The life and letters of an English physicist, 1887–1915. Berkeley: University of California Press; 1974.

    Google Scholar 

  53. Dubey SK, Anna T, Shakher C, Mehta DS. Fingerprint detection using full-field swept source optical coherence tomography. Appl Phys Lett. 2007;91:1–3.

    Google Scholar 

  54. Halliday D, Resnick R, Krane KS. Physics. New York: Wiley; 2002. p. 953–4.

    Google Scholar 

  55. Dubey SK, Mehta DS, Anand A, Shakher C. Simultaneous topography and tomography of latent fingerprints using full-filed swept source optical coherence tomography. J Opt A: Pure Appl Opt. 2008;10:015307. doi:10.1088/1464-4258/10/01/015307.

    Article  Google Scholar 

  56. Crane NJ, Bartick EG, Perlman RS, Huffman S. Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. J Forensic Sci. 2007;52:48–53.

    Article  PubMed  CAS  Google Scholar 

  57. Tahtouh M, Despland P, Shimmon R, Kalman JR, Reedy BJ. The application of infrared chemical imaging to the detection and enhancement of latent fingerprints: method optimization and further findings. J Forensic Sci. 2007;52:1089–96.

    Article  PubMed  CAS  Google Scholar 

  58. Day JS, Edwards HGM, Dobrowski SA, Voice AM. The detection of drugs of abuse in fingerprints using Raman spectroscopy i: latent fingerprints. Spectrochim Acta A. 2004;60:563–8.

    Article  Google Scholar 

  59. Ng PHR, Walker S, Tahtouh M, Reedy B. Detection of illicit substances in fingerprints by infrared spectral imaging. Anal Bioanal Chem. 2009;394:2039–48.

    Article  PubMed  CAS  Google Scholar 

  60. Leggett R, Lee-Smith EE, Jickells SM, Russell DA. “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals using antibody-functionalized nanoparticles. Angew Chem Int Ed Engl. 2007;46:4100–3.

    Article  PubMed  CAS  Google Scholar 

  61. Szynkowska MI, Czerski K, Rogowski J, Paryjczak T, Parczewski A. Detection of exogenous contaminants of fingerprints using ToF-SIMS. Surf Interface. 2010;42:393–7.

    Article  CAS  Google Scholar 

  62. Bradshaw R, Rao W, Wolstenholme R, Clench MR, Bleay S, Francese S. Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging. Forensic Sci Int. 2012;222:318–26.

    Article  PubMed  CAS  Google Scholar 

  63. Lambrechts SAG, van Dam A, de Vos J, van Weert A, Sijen T, Aalders MCG. On the autofluorescence of fingermarks. Forensic Sci Int. 2012;222:89–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Bond OBE, DPhil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Bond, J.W. (2014). Advances in the Use of Latent Finger Marks. In: Rutty, G. (eds) Essentials of Autopsy Practice. Springer, London. https://doi.org/10.1007/978-1-4471-5270-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5270-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5269-9

  • Online ISBN: 978-1-4471-5270-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics