Advances in the Use of Latent Finger Marks

  • John W. Bond


The enhancement and visualization of latent finger marks deposited at the scene of a crime remains the most effective means of identifying an offender by forensic science and hence of solving the crime. In this chapter, we consider recent advances in the visualization of latent finger marks deposited as secretions of sweat and the implications of this on the recovery of other evidence types, such as DNA. We focus on deposits onto surfaces that are likely to be encountered by the pathologist at the crime scene or postmortem examination. These surfaces include fabric, leather, metal, and skin, some of which have traditionally been known to be problematic in enhancing finger mark deposits. Many of the techniques described here are developments of existing technology, while others are entirely new methods of enhancing and visualizing finger mark deposits. Finally, an overview of other recent advances in finger mark visualization is given.


Fingerprints Enhancement Visualization Chemical treatment Skin Fabric Metal Noninvasive Intelligent fingerprinting 


  1. 1.
    Faulds H. On the skin-furrows of the hand. Nature. 1880;22:605.CrossRefGoogle Scholar
  2. 2.
    Herschel WJ. Skin furrows of the hand. Nature. 1880;23:76.CrossRefGoogle Scholar
  3. 3.
    Berry J, Stoney DA. History and development of fingerprinting. In: Lee HC, Gaensslen RE, editors. Advances in fingerprint technology. New York: Elsevier; 2001. p. 2–40.Google Scholar
  4. 4.
    Police Standards Unit. Forensic performance monitors. London: Home Office; 2005.Google Scholar
  5. 5.
    Thomas GL. The physics of fingerprints and their detection. J Phys E: Sci Instrum. 1978;11:722–31.CrossRefGoogle Scholar
  6. 6.
    McCartney C. Forensic identification and criminal justice. Devon: Willan; 2006. p. 1–30.Google Scholar
  7. 7.
    Kuchen M, Newell AC. A model for fingerprint formation. Europhys Lett. 2004;68:141–6.CrossRefGoogle Scholar
  8. 8.
    Mapelli M, Colpi M, Possenti A, Sigurdsson S. The fingerprint of binary intermediate-mass black holes in globular clusters: suprathermal stars and angular momentum alignment. Mon Not R Astro Soc. 2005;364:1315–26.CrossRefGoogle Scholar
  9. 9.
    Ramotowski RS. Composition of latent print residue. In: Lee HC, Gaensslen RE, editors. Advances in fingerprint technology. New York: Elsevier; 2001. p. 63–104.Google Scholar
  10. 10.
    Croxton RS, Baron MG, Butler D, Kent T, Sears VG. Development of a GC-MS method for the simultaneous analysis of latent fingerprint components. J Forensic Sci. 2006;51:1329–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Champod C, Lennard C, Margot P, Stoilovic M. Fingerprints and other ridge skin impressions. New York: CRC Press; 2004.CrossRefGoogle Scholar
  12. 12.
    Bowman V, editor. Manual of fingerprint development techniques. Sandridge: Home Office Police Scientific Development Branch; 2004.Google Scholar
  13. 13.
    Becue C, Moret S, Champod C, Margot P. Use of stains to detect fingermarks. Biotech Histochem. 2011;86:140–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Fraser J, Sturrock K, Deacon P, Bleay S, Bremner DH. Visualisation of fingermarks and grab impressions on fabrics. Part 1: gold/zinc vacuum metal deposition. Forensic Sci Int. 2011;208:74–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Philipson D, Bleay S. Alternative metal processes for vacuum metal deposition. J Forensic Ident. 2007;57:252–73.Google Scholar
  16. 16.
    I-Heng Y, Shyankay J, Chin-Min C, Kuang-Chuan W, Lei-Jang P, Jeh S. Development of latent fingerprint by ZnO deposition. Forensic Sci Int. 2011;207:14–8.CrossRefGoogle Scholar
  17. 17.
    Farrugia KJ, Savage KA, Bandey H, NicDaéid N. Chemical enhancement of footwear impressions in blood on fabric – part 1: protein stains. Sci Justice. 2011;51:99–109.PubMedCrossRefGoogle Scholar
  18. 18.
    Farrugia KJ, Savage KA, Bandey H, Ciuksza T, NicDaéid N. Chemical enhancement of footwear impressions in blood on fabric — part 2: peroxidase reagents. Sci Justice. 2011;51:110–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Farrugia KJ, Bandey H, Savage KA, NicDaéid N. Chemical enhancement of footwear impressions in blood on fabric — part 3: amino acid staining. Sci Justice. 2012;53:8–13; Scholar
  20. 20.
    Farrugia KJ, NicDaéid N, Savage KA, Bandey H. Chemical enhancement of footwear impressions in blood deposited on fabric — evaluating the use of alginate casting materials followed by chemical enhancement. Sci Justice. 2010;50:200–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Farrugia KJ, Bandey H, Bleay S. NicDaéid N. Chemical enhancement of footwear impressions in urine on fabric. Forensic Sci Int. 2012;214:67–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Farrugia KJ, Bandey H, Dawson L, NicDaéid N. Chemical enhancement of soil based footwear impressions on fabric. Forensic Sci Int. 2012;219:12–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Trapecar M, Balazic J. Fingerprint recovery from human skin surfaces. Sci Justice. 2007;47:136–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Trapecar M. Lifting techniques for finger marks on human skin previous enhancement by Swedish black powder — a preliminary study. Sci Justice. 2009;49:292–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Drahansky M, Dolezel M, Urbanek J. Influence of skin diseases on fingerprint recognition. J Biomed Biotechnol. 2012;2012:626148. doi: 10.1155/2012/626148.PubMedCrossRefGoogle Scholar
  26. 26.
    Bersellini C, Garofano L, Giannetto M, Lusardi F, Mori G. Development of latent fingerprints on metallic surfaces using electropolymerization processes. J Forensic Sci. 2001;46:871–7.PubMedGoogle Scholar
  27. 27.
    Beresford AL, Hillman AR. Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Anal Chem. 2010;82:483–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Beresford AL, Brown RM, Hillman AR, Bond JW. Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. J Forensic Sci. 2012;57:93–102.PubMedCrossRefGoogle Scholar
  29. 29.
    Trethewey KR, Chamberlain J. Corrosion for science and engineering. Harlow: Longman Scientific; 1995. p. 1–22.Google Scholar
  30. 30.
    Jensen O. ‘Rusters’. The corrosive action of palmar sweat I. Sodium chloride in sweat. Acta Dermatovenerol. 1979;59:135–8.Google Scholar
  31. 31.
    Jensen O, Nielsen E. ‘Rusters’. The corrosive action of palmar sweat II. Physical and chemical factors in palmar hyperhidrosis. Acta Derm Venereol. 1979;59:139–43.PubMedGoogle Scholar
  32. 32.
    Burton JL, Pye RJ, Brookes DB. Metal corrosion by chloride in sweat. Br J Dermatol. 1976;95:417–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Williams G, McMurray HN, Worsley DA. Latent fingerprint detection using a scanning Kelvin microprobe. J Forensic Sci. 2001;46:1085–92.PubMedGoogle Scholar
  34. 34.
    Williams G, McMurray N. Latent fingermark visualization using a scanning Kelvin probe. Forensic Sci Int. 2007;167:102–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Williams G. Visualization of fingerprints on metal surfaces using a scanning Kelvin probe. Fingerprint Whorld. 2010;36:51–60.Google Scholar
  36. 36.
    Halliday D, Resnick R, Krane KS. Physics. New York: Wiley; 2002. p. 1103–27.Google Scholar
  37. 37.
    Bond JW. Visualization of latent fingerprint corrosion of metallic surfaces. J Forensic Sci. 2008;53:812–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Bond JW. The thermodynamics of latent fingerprint corrosion of metal elements and alloys. J Forensic Sci. 2008;53:1344–52.PubMedGoogle Scholar
  39. 39.
    Wightman G, O’Connor D. The thermal visualization of latent fingermarks on metallic surfaces. Forensic Sci Int. 2010;204:88–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Bond JW, Eliopulos LA, Brady TF. Visualization of latent finger mark corrosion of brass, climatic influence in a comparison between the UK and Iraq. J Forensic Sci. 2011;56:506–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Kosec T, Merl DK, Milosev I. Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution. Corrosion Sci. 2008;50:1987–97.CrossRefGoogle Scholar
  42. 42.
    Nelkon M, Parker P. Advanced level physics. Portsmouth: Heinemann; 1974.Google Scholar
  43. 43.
    Bond JW. Optical enhancement of fingerprint deposits on brass using digital colour mapping. J Forensic Sci. 2011;56:1285–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Bond JW. On the electrical characteristics of latent finger mark corrosion of brass. J Phys D: Appl Phys. 2008;41:125502. doi: 10.1088/0022-3727/41/12/125502.CrossRefGoogle Scholar
  45. 45.
    Given BW. Latent fingerprints on cartridges and expended cartridge cases. J Forensic Sci. 1976;21:587–92.PubMedGoogle Scholar
  46. 46.
    Cantu AA, Leben DA, Ramotowski R, Kopera J, Simms JR. Use of acidified hydrogen peroxide to remove excess gun blue from gun blue treated cartridge cases and to develop latent prints on untreated cartridge cases. J Forensic Sci. 1998;43:294–8.Google Scholar
  47. 47.
    Migron Y, Mandler D. Development of latent fingerprints on unfired cartridges by palladium deposition: a surface study. J Forensic Sci. 1997;42:986–92.Google Scholar
  48. 48.
    Migron Y, Hocherman G, Springer E, Almog J, Mandler D. Visualization of sebaceous fingerprints on fired cartridge cases: a laboratory study. J Forensic Sci. 1998;43:543–8.PubMedGoogle Scholar
  49. 49.
    Bond JW, Heidel C. Visualization of latent fingerprint corrosion on a discharged brass shell casing. J Forensic Sci. 2009;54:892–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Bond JW, Brady TF. Physical characterization and recovery of corroded fingerprint impressions from post-blast copper pipe bomb fragments. J Forensic Sci. 2013;58:776–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Worley CG, Wiltshire SS, Miller TC, Havrilla GJ, Majidi V. Detection of visible and latent fingerprints using micro-x-ray fluorescence elemental imaging. J Forensic Sci. 2006;51:57–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Heilbron JL, Moseley HGJ. The life and letters of an English physicist, 1887–1915. Berkeley: University of California Press; 1974.Google Scholar
  53. 53.
    Dubey SK, Anna T, Shakher C, Mehta DS. Fingerprint detection using full-field swept source optical coherence tomography. Appl Phys Lett. 2007;91:1–3.Google Scholar
  54. 54.
    Halliday D, Resnick R, Krane KS. Physics. New York: Wiley; 2002. p. 953–4.Google Scholar
  55. 55.
    Dubey SK, Mehta DS, Anand A, Shakher C. Simultaneous topography and tomography of latent fingerprints using full-filed swept source optical coherence tomography. J Opt A: Pure Appl Opt. 2008;10:015307. doi: 10.1088/1464-4258/10/01/015307.CrossRefGoogle Scholar
  56. 56.
    Crane NJ, Bartick EG, Perlman RS, Huffman S. Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. J Forensic Sci. 2007;52:48–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Tahtouh M, Despland P, Shimmon R, Kalman JR, Reedy BJ. The application of infrared chemical imaging to the detection and enhancement of latent fingerprints: method optimization and further findings. J Forensic Sci. 2007;52:1089–96.PubMedCrossRefGoogle Scholar
  58. 58.
    Day JS, Edwards HGM, Dobrowski SA, Voice AM. The detection of drugs of abuse in fingerprints using Raman spectroscopy i: latent fingerprints. Spectrochim Acta A. 2004;60:563–8.CrossRefGoogle Scholar
  59. 59.
    Ng PHR, Walker S, Tahtouh M, Reedy B. Detection of illicit substances in fingerprints by infrared spectral imaging. Anal Bioanal Chem. 2009;394:2039–48.PubMedCrossRefGoogle Scholar
  60. 60.
    Leggett R, Lee-Smith EE, Jickells SM, Russell DA. “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals using antibody-functionalized nanoparticles. Angew Chem Int Ed Engl. 2007;46:4100–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Szynkowska MI, Czerski K, Rogowski J, Paryjczak T, Parczewski A. Detection of exogenous contaminants of fingerprints using ToF-SIMS. Surf Interface. 2010;42:393–7.CrossRefGoogle Scholar
  62. 62.
    Bradshaw R, Rao W, Wolstenholme R, Clench MR, Bleay S, Francese S. Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging. Forensic Sci Int. 2012;222:318–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Lambrechts SAG, van Dam A, de Vos J, van Weert A, Sijen T, Aalders MCG. On the autofluorescence of fingermarks. Forensic Sci Int. 2012;222:89–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LeicesterLeicesterUK

Personalised recommendations