Forensic Entomology: A Synopsis, Guide, and Update

  • Ian Robert DadourEmail author
  • Beryl Morris


Estimating the postmortem interval is the “bread and butter” component of what the discipline of forensic entomology delivers to the judicial system in matters concerning homicides, suspicious deaths, and suicides. The following chapter introduces the reader to the different requirements necessary to collect and preserve insect material from a cadaver. Apart from the importance of the chronological interval, insect larvae can also be used to extract drugs, poisons, gunshot residues, and DNA. To be able to analyze these substances, it is not only dependent on the context of where the corpse is located but what specimens are collected and how they are preserved. Currently there are no universal procedures and methods, so the practitioner must consider each case and what information is required and apply those techniques. This chapter summarizes those techniques and the relevant tools to complete these undertakings.


Forensic entomology Collecting insects Preserving insects Postmortem interval 


  1. 1.
    Marks MK, Love J, Dadour IR. Chapter 14: Taphonomy and time: estimating the postmortem interval. In: Wolfe Steadman D, editor. Hard evidence – case studies in forensic anthropology. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2009. p. 165–78.Google Scholar
  2. 2.
    de Carvalho LML. Chapter 9: Toxicology and forensic entomology. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 163–78.Google Scholar
  3. 3.
    Carvahlo F, Dadour IR, Groth DM, Harvey ML. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae): a forensically important blowfly. For Sci Med Path. 2005;1:261–5.CrossRefGoogle Scholar
  4. 4.
    Morris B, Dadour IR. Chapter 91a: Insects and their uses in legal cases. In: Freckleton I, Selby H, editors. Expert evidence. Sydney: The Law Book Company Limited; 2010. p. 8-5291–8-5381.Google Scholar
  5. 5.
    Nuorteva P. Sarcosaprophagous insects as forensic indicators. In: Tedeschi CG, Eckert WG, Tedeschi LG, editors. Forensic medicine – a study in trauma and environmental hazards. Philadelphia: Saunders; 1977. p. 1072–95.Google Scholar
  6. 6.
    Goff ML. Gamasis mites as potential indicators of post-mortem interval. In: Channabasavanna GP, Viraktamath CA, editors. Progress in acarology, vol. 1. New Delhi: Oxford & IBH Publishing; 1989. p. 443–50.Google Scholar
  7. 7.
    Lord WD, Stevenson JR. American registered professional entomologists. Washington DC: Chesapeake Chapter. 1986. p. 42.Google Scholar
  8. 8.
    Magni P, Guercini S, Leighton A, Dadour I. Forensic entomologists: an evaluation of their status. J Insect Sci. 2013 (in press).Google Scholar
  9. 9.
    Potter MF. Chapter 3: Termites. In: Mallis A, editor. Handbook of pest control. 10th ed. Cleveland, Ohio: Mallis Handbook and Technical Training Company; 2011. p. 292–441.Google Scholar
  10. 10.
    Tucker J. Chapter 24: Implementing structural pest management. In: Mallis A, editor. Handbook of pest control. 10th ed. Cleveland, Ohio: Mallis Handbook and Technical Training Company; 2011. p. 1497–515.Google Scholar
  11. 11.
    Munro J. Pests of stored products. The Rentokil library. Colchester: Benham and Co.; 1966. p. 234.Google Scholar
  12. 12.
    Weier J. Chapter 13: Stored product pest. In: Mallis A, editor. Handbook of pest control. 10th ed. Mallis Handbook Company; 2011. p. 883–966.Google Scholar
  13. 13.
    Greenberg B, Kunich JC. Entomology and the law. Flies as forensic indicators. Cambridge: Cambridge University Press; 2002. p. 306.Google Scholar
  14. 14.
    Leclercq M. Entomological parasitology. The relations between entomology and the medical sciences. In: Leclercq M, editor. Entomology and legal medicine. Oxford: Pergamon Press; 1969. p. 128–42.Google Scholar
  15. 15.
    Dadour IR, Harvey ML. The use of insects and associated arthropods in legal cases: a historical and practical perspective. In: Oxenham M, editor. Forensic approaches to death, disaster and abuse. Bowen Hills: Australian Academic Press; 2008.Google Scholar
  16. 16.
    Byrd JH, Castner JL. Entomological evidence. The utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 681.Google Scholar
  17. 17.
    Beyer JC, Enos WF, Stajic M. Drug identification through analysis of maggots. J Forensic Sci. 1980;25:411–2.PubMedGoogle Scholar
  18. 18.
    Catts EP, Goff ML. Forensic entomology in criminal investigations. Ann Rev Entomol. 1992;37:253–72.CrossRefGoogle Scholar
  19. 19.
    Crosby TK, Watt JC, Kistemaker AC, Nelson PE. Entomological identification of the origin of imported cannabis. Forensic Sci Soc. 1986;26:35–44.CrossRefGoogle Scholar
  20. 20.
    Gunatilake K, Goff ML. Detection of organophosphate poisoning in a putrefying body by analysing arthropod larvae. J Forensic Sci. 1989;34:714–6.PubMedGoogle Scholar
  21. 21.
    Roeterdink EM, Dadour IR, Watling RJ. Extraction of gunshot residues from the larvae of the forensically important blowfly Calliphora dubia (Macquart) (Diptera: Calliphoridae). Int J Legal Med. 2004;118:63–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Goff ML, Lord WB. Entomotoxicology: insects as toxicological indicators and the impact of drugs and toxins on insect development. In: Byrd JH, Castner JL, editors. Entomological evidence. The utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 427–36.Google Scholar
  23. 23.
    Haglund WD, Reay DT, Swindler DR. Canid scavenging/disarticulation sequence of human remains in the Pacific Northwest. J Forensic Sci. 1989;34:587–606.PubMedGoogle Scholar
  24. 24.
    Smith KGV. A manual of forensic entomology. London: Trustees of the British Museum of Natural History; 1986. p. 205.Google Scholar
  25. 25.
    Prichard JD, Kossoris PD, Leibovitch RA, Robinson LD, Lovell WF. Implications of Trombiculid mite bites; report of a case and submission of evidence in a murder trial. J Forensic Sci. 1986;31:301–6.PubMedGoogle Scholar
  26. 26.
    Goff ML, Brown WA, Hewadikaram KA, Omari AI. Effect of heroin in decomposing tissues on the development rate of Boettcherisca peregrina (Diptera: Sarcophagidae) and implications to the estimations of postmortem intervals using arthropod development patterns. J Forensic Sci. 1991;36:537–42.PubMedGoogle Scholar
  27. 27.
    Benecke M, Lessig R. Child neglect and forensic entomology. Forensic Sci Int. 2001;120:155–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Benecke M. Forensic entomology special issue. Forensic Sci Int. 2001;120:1–160.CrossRefGoogle Scholar
  29. 29.
    Benecke M. Cases of neglect involving entomological evidence. In: Byrd JH, Castner JL, editors Entomological evidence. The utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. pp. 627–49.Google Scholar
  30. 30.
    Berenbaum MR. Bugs in the system: insects and their impact on human affairs. Reading: Addison-Wesley; 1995.Google Scholar
  31. 31.
    Morris B. Physiology and taxonomy of blowflies. MAgSc Thesis, University of Adelaide; 1993.Google Scholar
  32. 32.
    Anderson GS. Wildlife forensic entomology: determining time of death in two illegally killed black bear cubs. J Forensic Sci. 1999;44:856–9.PubMedGoogle Scholar
  33. 33.
    Watson EJ, Carlton CE. Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J Med Entomol. 2003;4:338–47.CrossRefGoogle Scholar
  34. 34.
    Watson EJ, Carlton CE. Insect succession and decomposition of wildlife carcasses during fall and winter in Louisiana. J Med Entomol. 2005;42:193–203.PubMedCrossRefGoogle Scholar
  35. 35.
    Merck MD. Veterinary forensics: animal cruelty investigations. Ames: Blackwell Publishing; 2007.CrossRefGoogle Scholar
  36. 36.
    Easton AM, Smith KG. The entomology of the cadaver. Med Sci Law. 1970;10:208–15.PubMedGoogle Scholar
  37. 37.
    Snyder Sachs J. Corpse: nature, forensics, and the struggle to pinpoint time of death. London: Arrow Books; 2001. 270 pp.Google Scholar
  38. 38.
    Larkin B, Iaschi S, Tay G, Dadour IR. Using accumulated degree-days to estimate post mortem interval (PMI) from the DNA yield of porcine skeletal muscle. For Sci Med Path. 2010;6:83–92.CrossRefGoogle Scholar
  39. 39.
    Morris B. First reported case of human aural Myiasis caused by the flesh fly Parasarcophaga crassipalpis (Diptera: Sarcophagidae). J Parasit. 1987;73:1068–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Morris B, Weinstein P. A case of aural myiasis in Australia. Med J Aust. 1986;145:634–5.PubMedGoogle Scholar
  41. 41.
    Zumpt F. Myiasis in man and animals in the old world. London: Butterworths; 1965. p. 267.Google Scholar
  42. 42.
    Cook DF, Dadour IR. Larviposition in the ovoviviparous blowfly Calliphora dubia. Med Vet Entomol. 2011;25:53–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Amendt J, Campobasso CP, Goff ML, Grassberger M. Current concepts in forensic entomology. Dordrecht/London: Springer; 2010. p. 376.CrossRefGoogle Scholar
  44. 44.
    McKnight BE. The washing away of wrongs: forensic medicine in thirteenth-century China. Ann Arbor: University of Michigan; 1981. p. 181.Google Scholar
  45. 45.
    Megnin JP. La Faune des Tombeaux. Compte Rendu Hebdomadaire des Séances de l’Academie des Sciences. 1887;105:948–51.Google Scholar
  46. 46.
    Megnin JP. La faune des cadavres; application de l’entomologie a la medecine legale. In: Léauté H, editor. Encyclopedie Scientifique des Aides-Memoires. Paris: Masson et Gauthiers-Villars; 1894. p. 214.Google Scholar
  47. 47.
    Johnston W, Villeneuve G. On the medico-legal applications of entomology. Montreal Med J. 1897;26:81–90.Google Scholar
  48. 48.
    Motter MG. A contribution to the study of the fauna of the grave. A study of one hundred and fifty disinterments, with some additional experimental observations. J NY Entomol Soc. 1898;6:201–31.Google Scholar
  49. 49.
    Glaister J, Brash JC. Medico-legal aspects of the Ruxton case. Baltimore: William Wood & Company; 1937. p. 144–70, 245–59.Google Scholar
  50. 50.
    Nuorteva P, Isokoski M, Laiho K. Studies on the possibilities of using blowflies (Dipt.) as medicolegal indicators in Finland. Ann Entomol Fenn. 1967;33:217–25.Google Scholar
  51. 51.
    Nuorteva P, Schumann H, Isokoski M, Laiho K. Studies on the possibility of using blowflies (Dipt, Calliphoridae) as medicolegal indicators in Finland. 2. Four cases where species identification was performed from larvae. Ann Entomol Fenn. 1974;40:70–4.Google Scholar
  52. 52.
    Nuorteva P. Age determination of a blood stain in a decomposing shirt by entomological means. Forensic Sci. 1974;3:89–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Leclercq M. Entomologie et Medecine Legale. Etude des Insectes et Acariens Necrophages pour determiner la date de la mort. Spectrum Int. 1974;17:1–7.Google Scholar
  54. 54.
    Leclercq M. Entomologie et Medecine Legale, Datation de la Mort, Coll Med Legale Toxicol Med No 108. Paris: Masson; 1978. p. 100.Google Scholar
  55. 55.
    Goff ML. Forensic entomology. In: Resh VH, Cardé R, editors. Encyclopedia of insects. 2nd ed. London: Academic Press; 2009. p. 381–5.CrossRefGoogle Scholar
  56. 56.
    Haskell NH, Williams RE, Catts EP. Entomology and death: a procedural guide. 2nd ed. Clemson, SC: East Park Printing; 2008. p. 216.Google Scholar
  57. 57.
    Mann RW, Bass WM, Meadows L. Time since death and decomposition of the human body-variables and observations in case and experimental field studies. J Forensic Sci. 1990;35:103–11.PubMedGoogle Scholar
  58. 58.
    Bass WM. Time interval since death. A difficult decision. In: Rathbun TA, Buikstra JE, editors. Human identification: case studies in forensic anthropology. Springfield: Charles C. Thomas; 1984. p. 136–47.Google Scholar
  59. 59.
    Reed HB. A Study of dog carcass communities in Tennessee, with special reference to the insects. Am Mid Nature. 1958;59:213–45.CrossRefGoogle Scholar
  60. 60.
    Goff ML. Estimation of postmortem interval using arthropod development and successional patterns. Forensic Sci Rev. 1993;5:81–94.Google Scholar
  61. 61.
    Bornemissza GF. An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool. 1957;5:1–12.CrossRefGoogle Scholar
  62. 62.
    Goff ML. Comparison of insect species associated with decomposing remains recovered inside dwellings and outdoors on the Island of Oahu. J Forensic Sci. 1991;36:748–53.PubMedGoogle Scholar
  63. 63.
    Goff ML. A fly for the prosecution. How insect evidence helps solve crimes. Cambridge: Harvard University Press; 2000. p. 225.Google Scholar
  64. 64.
    Voss S, Spafford H, Dadour I. Temperature-dependant development of Nasonia vitripennis on five forensically important carrion fly species. Entomol Exp Appl. 2010;135:37–47.CrossRefGoogle Scholar
  65. 65.
    Voss S, Spafford H, Dadour I. Temperature-dependant development of the parasitoid Tachinaephagus zealandicus on five forensically important carrion fly species. Med Vet Entomol. 2010;24:189–98.PubMedCrossRefGoogle Scholar
  66. 66.
    Forbes SL, Dadour IR. The soil environment and forensic entomology. In: Byrd JH, Castner JL, editors. Entomological evidence. The utility of arthropods in legal investigations. 2nd ed. Boca Raton: CRC Press; 2010. p. 407–26.Google Scholar
  67. 67.
    Anderson GS. Minimum and maximum developmental rates of some forensically important Calliphoridae (Diptera). J Forensic Sci. 2000;45:824–32.PubMedGoogle Scholar
  68. 68.
    Vass AA, Barshick SA, Sega G, Caton J, Skeen JT, Love JC, Synstelien JA. Decomposition chemistry of human remains: a new methodology for determining post-mortem interval. J Forensic Sci. 2002;47:542–53.PubMedGoogle Scholar
  69. 69.
    Lord WD. Case histories of the use of insects in investigations. In: Catts EP, Haskell NH, editors. Entomology and death: a procedural guide. Clemson: Joyces Print Shop; 1990. p. 9–37.Google Scholar
  70. 70.
    Anderson GS, VanLaerhoven SL. Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci. 1996;41:617–25.Google Scholar
  71. 71.
    Gullan PJ, Cranston PS. The insects: an outline of entomology. 3rd ed. Malden: Blackwell Publishing; 2005. p. 505.Google Scholar
  72. 72.
    Chapman RF. The insects: structure and function. 4th ed. Cambridge: Cambridge University Press; 1998. p. 770.CrossRefGoogle Scholar
  73. 73.
    Imms AD, Richards OW, Davies RG. Imms’ general textbook of entomology: structure, physiology, and development. London: Chapman and Hall; 1977. p. 1354.Google Scholar
  74. 74.
    Vogt WG, Woodburn TL. The influence of temperature and moisture on the survival and duration of the egg stage of the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull Entomol Res. 1980;70:665–71.CrossRefGoogle Scholar
  75. 75.
    Vogt WG, Woodburn TL, Morton R, Ellem BA. The analysis and standardisation of trap catches of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull Entomol Res. 1985;73:609–17.CrossRefGoogle Scholar
  76. 76.
    Lord WD, Burger JF. Collection and preservation of forensically important entomological materials. J Forensic Sci. 1983;28:936–44.Google Scholar
  77. 77.
    Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR. Best practice in forensic entomology – standards and guidelines. Int J Legal Med. 2007;121:90–104.PubMedCrossRefGoogle Scholar
  78. 78.
    Slone DH, Gruner SV. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J Med Entomol. 2007;44:516–23.PubMedCrossRefGoogle Scholar
  79. 79.
    Tantawi TI, Greenberg B. The effect of killing and preservative solutions on estimates of maggot age in forensic cases. J Forensic Sci. 1993;38:702–7.PubMedGoogle Scholar
  80. 80.
    Davies K, Harvey ML. Internal morphological analysis for age estimation of blow fly pupae (Diptera: Calliphoridae) in postmortem interval estimation. J Forensic Sci. 2012. doi: 10.1111/j.1556-4029.2012.02196.x.Google Scholar
  81. 81.
    Myskowiak JB, Doums C. Effects of refrigeration on the biometry and development of Protophormia terraenovae (Robineau–Desvoidy) (Diptera: Calliphoridae) and its consequences in estimating post-mortem interval in forensic investigations. Forensic Sci Int. 2002;125:254–61.PubMedCrossRefGoogle Scholar
  82. 82.
    Johl HK, Anderson GS. Effects of refrigeration on development of the blowfly Calliphora vicina (Diptera: Calliphoridae) and their relationship t time of death. J Entomol Soc BC. 1996;93:93–8.Google Scholar
  83. 83.
    Davies L, Ratcliffe GG. Development rates in some pre-adult stages in blowflies with reference to low temperatures. Med Vet Entomol. 1994;8:245–54.PubMedCrossRefGoogle Scholar
  84. 84.
    Byrd JH, Butler JF. Effects of temperature on Cochliomyia macellaria (Diptera: Calliphoridae) development. J Med Entomol. 1996;33:901–5.PubMedGoogle Scholar
  85. 85.
    Byrd JH, Butler JF. Effects of temperature on Chrysomya rufifacies (Diptera: Calliphoridae) development. J Med Entomol. 1997;34:353–8.PubMedGoogle Scholar
  86. 86.
    Byrd JH, Butler JF. Effects of temperature on Sarcophaga haemorrhoidalis (Diptera: Sarcophagidae) development. J Med Entomol. 1998;35:694–8.PubMedGoogle Scholar
  87. 87.
    Huntington TE, Higley LG, Baxindale FP. Maggot development during morgue storage and its effect on estimating the post-mortem interval. J Forensic Sci. 2007;52:453–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Introna Jr F, Campobasso CP, Goff ML. Entomotoxicology. Forensic Sci Int. 2001;120:42–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Goff ML, Lord WD. Entomotoxicology: a new area for forensic investigation. Am J Forensic Med Pathol. 1994;15:51–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Pounder DJ. Forensic entomo-toxicology. J Forensic Sci Soc. 1991;31:469–72.PubMedCrossRefGoogle Scholar
  91. 91.
    Sohal RS, Lamb RE. Storage excretion of metalic cations in the adult housefly Musca domestica. J Insect Physiol. 1979;25:119–24.CrossRefGoogle Scholar
  92. 92.
    Nuorteva P, Nuorteva SL. The fate of mercury in sarcosaprophagous flies and in insects eating them. Ambio. 1982;11:34–7.Google Scholar
  93. 93.
    Romolo FS, Margot P. Identification of gunshot residue: a critical review. Forensic Sci Int. 2001;119:195–211.CrossRefGoogle Scholar
  94. 94.
    Liu X, Shi Y, Wang H, Zang R. Determination of malathion levels and its effect on the development of Chrysomya megacephala (Fabricius) in south China. Forensic Sci Int. 2009;192:14–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Wolff M, Builes A, Zapata G, Morales G, Benecke M. Detection of parathion (0,0-diethyl 0-(4-nitrophenyl) phosphorothioate) by HPLC in insects of forensic importance in Medellin, Colombia. Aggrawal’s Internet. J Forensic Med Toxicol. 2004;5:6–11.Google Scholar
  96. 96.
    Kintz P, Tracqui A, Mangin P. Toxicology and fly larvae on a putrefied cadaver. J Forensic Sci Soc. 1990;30:243–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Kintz P, Tracqui A, Ludes B, Waller J, Boukhabza A, Mangin P, Lugnier AA, Chaumont AJ. Fly larvae and their relevance in forensic toxicology. Am J Forensic Med Pathol. 1990;11:63–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Manhoff DT, Hood I, Caputo F, Perry J, Rosen S, Mirchandani HG. Cocaine in decomposed human remains. J Forensic Sci. 1991;36:1732–5.PubMedGoogle Scholar
  99. 99.
    Nolte KB, Pinder RD, Lord WD. Insect larvae used to detect cocaine poisoning in a decomposed body. J Forensic Sci. 1992;4:179–85.Google Scholar
  100. 100.
    Wilson Z, Hubbard S, Pounder DJ. Drug analysis in fly larvae. Am J Forensic Med Pathol. 1993;14:118–20.PubMedCrossRefGoogle Scholar
  101. 101.
    Introna Jr F, Lo Dico C, Caplan YH, Smialek JE. Opiate analysis of cadaveric blow fly larvae as an indicator of narcotic intoxication. J Forensic Sci. 1990;35:118–22.PubMedGoogle Scholar
  102. 102.
    Kintz P, Tracqui A, Mangin P. Analysis of opiate in fly larvae sampled on putrefied cadaver. J Forensic Sci Soc. 1994;34:95–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Bourel B, Fleurisse L, Hedouin Y, Cailliez JC, Creusy C, Goff ML, Gosset D. Immunohistochemical contribution to the study of morphine metabolism in Calliphoridae larvae and implications in forensic entomotoxicology. J Forensic Sci. 2001;46:596–9.PubMedGoogle Scholar
  104. 104.
    Sadler DW, Fuke C, Court F, Pounder DJ. Drug accumulation and elimination in Calliphora vicina larvae. Forensic Sci Int. 1995;71:191–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Sadler DW, Patl MR, Robertson L, Brown G, Fuke E, Pounder DJ. Barbiturates and analgesics in Calliphora vicina larvae. J Forensic Sci. 1997;42:481–8.Google Scholar
  106. 106.
    O’Brien C, Turner B. Impact of paracetamol on Calliphora vicina larval development. Int J Legal Med. 2004;118:188–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Goff ML, Miller ML, Paulsson JD, Lord WD, Richards E, Omori AI. Effects of 3, 4-methylenedioxymethamphetamine in decomposing tissues on the development of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and detection of the drug in postmortem blood, liver tissue, larvae and puparia. J Forensic Sci. 1997;42:276–80.PubMedGoogle Scholar
  108. 108.
    Miller ML, Lord WD, Goff ML, Donnelly B, McDonough ET, Alexis JC. Isolation of amitriptyline and nortriptyline from fly puparia (Phoridae) and beetle exuvia (Dermestidae) associated with mummified human remains. J Forensic Sci. 1994;39:1305–13.Google Scholar
  109. 109.
    Gagliano-Candela R, Aventaggiato L. The detection of toxic substances in entomological specimens. Int J Legal Med. 2001;114:197–203.PubMedCrossRefGoogle Scholar
  110. 110.
    Drijfhout FP. Cuticular hydrocarbons: a new tool in forensic entomology? In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 179–203.Google Scholar
  111. 111.
    Lockey KH. Lipids of the insect cuticle: origin composition and function. Comp Biochem Physiol. 1988;89B:595–645.Google Scholar
  112. 112.
    Monnin T. Chemical recognition of reproductive status in social insects. Ann Zool Fenn. 2006;43:515–30.Google Scholar
  113. 113.
    Martin C, Salvy M, Provost E, Bagneres AG, Roux M, Crauser D, Clement JL, Le Conte Y. Variations in chemical mimicry by the ectoparasitic mite Varma jacobsoni according to the developmental stage of the host honey bee Apis mellifera. Ins Biochem Mol Biol. 2001;31:365–79.CrossRefGoogle Scholar
  114. 114.
    Buczkowski G, Kumar R, Suib SL, Silverman J. Diet- related modification of cuticular hydrocarbon profiles of the Argentine ant Linepithema humile diminishes intercolony aggression. J Chem Ecol. 2005;31:829–43.PubMedCrossRefGoogle Scholar
  115. 115.
    Savarit F, Ferveur J-F. Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J Exp Biol. 2002;205:3241–9.PubMedGoogle Scholar
  116. 116.
    Rouault J-D, Marican C, Wicker-Thomas C, Jallon J-M. Relations between cuticular hydro carbons (HC) polymorphism resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. stimulans. Genetica. 2004;120:195–212.PubMedCrossRefGoogle Scholar
  117. 117.
    Zhu GH, Ye GY, Hu C, Xu XH, Li K. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Med Vet Entomol. 2006;20:438–44.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhu GH, Xu XH, Yu XJ, Zhang Y, Wang JR. Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci Int. 2007;169:1–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Roux O, Gers C, Legal L. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med Vet Entomol. 2008;22:309–17.PubMedCrossRefGoogle Scholar
  120. 120.
    Urech R, Brown GW, Moore CJ, Green PE. Cuticular hydrocarbons of buffalo fly Haematobia exigua and chemotaxonomic differentiation from horn fly H-Irritans. J Chem Ecol. 2005;31:2451–61.PubMedCrossRefGoogle Scholar
  121. 121.
    Page M, Nelson LJ, Blomquist GJ, Seybold SJ. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J Chem Ecol. 1997;23:1053–99.CrossRefGoogle Scholar
  122. 122.
    Ye GY, Li K, Zhu JY, Zhu GH, Hu C. Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. J Med Entomol. 2007;44:450–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Rouault J, Capy P, Jallon JM. Variations of male cuticular hydroca rbons with geoclimatic variables: an adaptative mechanism in Drosophila melanogaster? Genetica. 2001;110:117–30.CrossRefGoogle Scholar
  124. 124.
    Ugelvig LV, Drijfhout FP, Kronauer DJC, Boomsma JJ, Pedersen JS, Cremer S. The introduction history of invasive garden ants in Europe: integrating genetic chemical and behavioural approaches. BMC Biol. 2008. doi: 10.1186/1741-7007-6-11.PubMedGoogle Scholar
  125. 125.
    Wells JD, Stevens JR. Molecular methods for forensic entomology. In: Byrd JH, Castner JL, editors. Entomological evidence. The utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 437–52.Google Scholar
  126. 126.
    Harvey ML, Mansell MW, Villet MH, Dadour IR. Phylogeny of some forensically important Calliphoridae (Diptera) in Australia and southern Africa. Med Vet Entomol. 2003;17:1–7.CrossRefGoogle Scholar
  127. 127.
    Wallman JF, Adams M. Molecular systematics of Australian carrion-breeding blowflies of the Genus Calliphora (Diptera: Calliphoridae). Aust J Zool. 1997;45:337.CrossRefGoogle Scholar
  128. 128.
    Wallman JF, Adams M. The forensic application of allozyme electrophoresis to the identification of blowfly larvae (Diptera: Calliphoridae) in southern Australia. J Forensic Sci. 2001;46:681.PubMedGoogle Scholar
  129. 129.
    Wallman JF, Donnellan SC. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Sci Int. 2001;120:60–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Sperling FAH, Anderson GS, Hickey DA. A DNA-based approach to the identification of insect specimens used for post-mortem interval estimation. J Forensic Sci. 1994;39:418.PubMedGoogle Scholar
  131. 131.
    Malgorn Y, Coquoz R. DNA typing for identification of some species of calliphoridae. An interest in forensic entomology. Forensic Sci Int. 1999;102:111–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Benecke M, Wells J. Molecular techniques for forensically important insects. In: Byrd JH, Castner JL, editors. Entomological evidence: the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2000. p. 341–52.Google Scholar
  133. 133.
    Stevens J, Wall R. Evolution of ectoparasitism in the Genus Lucilia (Diptera: Calliphoridae). Int J Parasitol. 1997;27:51.PubMedCrossRefGoogle Scholar
  134. 134.
    Mazzanti M, Alessandrini F, Tagliabracci A, Wells JD, Campobasso CP. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology. Forensic Sci Int. 2010;195:99–102.PubMedCrossRefGoogle Scholar
  135. 135.
    McDonagh L, Thornton C, Wallman JF, Stevens JR. Development of an antigen-based rapid diagnostic test for the identification of blowfly (Calliphoridae) species of forensic significance. Forensic Sci Int. 2009;3:162–5.CrossRefGoogle Scholar
  136. 136.
    Harrison RG. Animal mtDNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol. 1989;4:6–11.PubMedCrossRefGoogle Scholar
  137. 137.
    Harvey ML, Gaudieri S, Villet MH, Dadour IR. A global study of forensically significant Calliphorids: implications for identification. Forensic Sci Int. 2008;177:66–76.PubMedCrossRefGoogle Scholar
  138. 138.
    Campobasso CP, Linville JG, Wells JD, Introna F. Forensic genetic analysis of insect gut contents. Am J Forensic Med Pathol. 2005;26:161–5.PubMedGoogle Scholar
  139. 139.
    Wells JD, Introna Jr F, Di Vella G, Campobasso CP, Hayes J, Sperling FA. Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci. 2001;46:685–7.PubMedGoogle Scholar
  140. 140.
    Kreife J, Kempfer S. Isolation and characterization of human DNA from mosquitoes (Culicidae). Int J Legal Med. 1999;112:380–2.CrossRefGoogle Scholar
  141. 141.
    Lord WD, DiZinno JA, Wilson MR, Budowle B, Taplin D, Meinking TL. Isolation, amplification, and sequencing of human mitochondrial DNA obtained from human crab louse, Phthirus Pubis (L.), blood meals. J Forensic Sci. 1998;43:1097–100.PubMedGoogle Scholar
  142. 142.
    DiZinno JA, Lord WD, Collins-Morton MB, Wilson MR, Goff ML. Mitochondrial DNA sequencing of beetle larvae (Nitidulidae: Omosita) recovered from human bone. J Forensic Sci. 2002;47:1337–9.PubMedGoogle Scholar
  143. 143.
    Benecke M. Asservierung von Insekten, Spinnen und Krebsmaterial fur die Forensisch Kriminalistische Untersuchung (collecting insects, spiders and crustaceans for criminal forensic study). Arch Kriminol. 1997;199:167–76.PubMedGoogle Scholar
  144. 144.
    Nelson LA, Dowton M, Wallman JF. Thermal attributes of Chrysomya species. Entomol Exp Appl. 2009;133:260–75.CrossRefGoogle Scholar
  145. 145.
    Dadour IR, Cook DF, Wirth N. Rate of development of Hydrotaea rostrata under summer and winter (cyclic and constant) temperature regimes. Med Vet Entomol. 2001;15:177–82.PubMedCrossRefGoogle Scholar
  146. 146.
    O’Flynn MA. The succession and rate of development of blowflies in carrion in Southern Queensland and the application of these data to Forensic Entomology. J Aust Entomol Soc. 1983;22:137–48.CrossRefGoogle Scholar
  147. 147.
    von Zuben CJ, Bassanezi RC, von Zuben FJ. Theoretical approaches to forensic entomology: II. Mathematical model of larval development. J Appl Entomol. 1998;275:122.Google Scholar
  148. 148.
    Wells JD, Kurahashi H. Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) development rate, variation and the implications for forensic entomology. Jap J San Zool. 1994;45:303.Google Scholar
  149. 149.
    Thompson RCA, Lymbery AJ. Echinococcus and hydatid disease. Wallingford: CAB International; 1995. p. 477.Google Scholar
  150. 150.
    Dadour IR, Cook DF, Fissioli JN, Bailey WJ. Forensic entomology: application, education and research in Western Australia. Forensic Sci Int. 2001;120:48–52.PubMedCrossRefGoogle Scholar
  151. 151.
    Ratcliffe GG. Comparative studies on the developmental rates of the larvae of certain blowflies (“Diptera: Calliphoridae”) at constant and alternating temperatures. MSc Thesis, University of Durham; 1984.Google Scholar
  152. 152.
    Erzinclioglu YZ. Areas of research in forensic entomology. Med Sci Law. 1986;26:273–8.PubMedGoogle Scholar
  153. 153.
    Voss SC, Forbes SL, Dadour IR. Decomposition and insect succession on cadavers inside a vehicle environment. Forensic Sci Med Pathol. 2008;4:22–32.PubMedCrossRefGoogle Scholar
  154. 154.
    Dadour IR, Almanjahie I, Fowkes ND, Keady G, Vijayan K. Temperature variations in a parked vehicle. Forensic Sci Int. 2011;207:205–11.PubMedCrossRefGoogle Scholar
  155. 155.
    Morris B. Towards an entomological timing of death. In: Proceedings of the 8th Australian forensic science symposium, Perth; 1983. p. 347–54.Google Scholar
  156. 156.
    Deonier CC. Carcass temperatures and their relation to winter blowfly populations and activity in the southwest. J Econ Entomol. 1940;33:166–70.Google Scholar
  157. 157.
    Charabidze D, Bourel B, Gosset D. Larval-mass effect: characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci Int. 2011;211:61–6.PubMedCrossRefGoogle Scholar
  158. 158.
    VanLaerhoven SL. Blind validation of postmortem interval estimates using developmental rates of blow flies. Forensic Sci Int. 2008;180:76–80.PubMedCrossRefGoogle Scholar
  159. 159.
    Dallwitz R. The influence of constant and fluctuating temperatures on the development rate and survival of the Australian sheep blowfly Lucilia cuprina. Appl Exp Entomol. 1984;36:89–95.CrossRefGoogle Scholar
  160. 160.
    Waterhouse DF. The relative importance of live sheep and of carrion as breeding grounds for the Australian sheep blowfly Lucilia cuprina. Council Sci Ind Res Bull. 1947;1:217.Google Scholar
  161. 161.
    Fuller ME. The insect inhabitants of carrion: a study in animal ecology. Bull Council Sci Ind Res. 1934;82:1–62.Google Scholar
  162. 162.
    Kelly JA, v.d. Linde TC, Anderson GS. The influence of clothing and wrapping on carcass decomposition and arthropod succession during the warmer seasons in Central South Africa. J Forensic Sci. 2009;54:1105–12.PubMedCrossRefGoogle Scholar
  163. 163.
    Voss S, Cook DF, Dadour IR. Decomposition and insect succession of clothed and unclothed carcasses in Western Australia. Forensic Sci Int. 2011;211:67–75.PubMedCrossRefGoogle Scholar
  164. 164.
    Fabre JH. Souvenirs entomologiques. 6th Ser. Paris: Librairie Ch. Delagrave; 1890. p. 113–29. Chapter 7.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Centre for Forensic ScienceUniversity of Western AustraliaNedlandsAustralia
  2. 2.Faculty of ScienceUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations