Skip to main content

Medicolegal Autopsies and Pharmacogenetics

  • Chapter
  • First Online:
  • 1229 Accesses

Abstract

A medicolegal cause of death investigation needs expertise from forensic pathology, imaging, toxicology, biochemistry, and genetics. Medicolegal autopsies produce reliable data to investigate unexpected natural and injury or toxic deaths and are a fundamental part of citizen’s legal protection. Medicolegal investigations can also reveal trends or patterns in society, which can be used by policymakers to implement preventive actions and to make evidence-based health or legislative initiatives. The new technology allows high-throughput procedures for disease and pharmacogenetic testing, which also can be applied for medicolegal cause of death investigation purposes. Some eye-opening cases have been reported for postmortem pharmacogenetics, underlying the potential that this young field can solve some of the most problematic medicolegal autopsy cases. The cost-effective use of pharmacogenetics in medicolegal investigation of death requires integrating research in forensic pathology, toxicology, and genetics. In order to fully utilize the new technology and concepts, it is crucial that pharmacogenetic methods are integrated to medicolegal autopsy premises and that academic research in this field is activated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berglund EC, Kiialainen A, Syvänen AC. Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet. 2011;2:23.

    Article  PubMed  CAS  Google Scholar 

  2. Raymond FL, Whibley A, Stratton MR, Gecz J. Lessons learnt from large-scale exon re-sequencing of the X chromosome. Hum Mol Genet. 2009;18(R1):R60–4.

    Article  PubMed  CAS  Google Scholar 

  3. Laks S, Pelander A, Vuori E, Ali-Tolppa E, Sippola E, Ojanperä I. Analysis of street drugs in seized material without primary reference standards. Anal Chem. 2004;76(24):7375–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ristimaa J, Gergov M, Pelander A, Halmesmäki E, Ojanperä I. Broad-spectrum drug screening of meconium by liquid chromatography with tandem mass spectrometry and time-of-flight mass spectrometry. Anal Bioanal Chem. 2010;398(2):925–35.

    Article  PubMed  CAS  Google Scholar 

  5. Pelander A, Ristimaa J, Ojanperä I. Vitreous humor as an alternative matrix for comprehensive drug screening in post-mortem toxicology by liquid chromatography-time-of-flight mass spectrometry. J Anal Toxicol. 2010;34(6):312–8.

    Article  PubMed  CAS  Google Scholar 

  6. Bianco AM, Marcuzzi A, Zanin V, Girardelli M, Vuch J, Crovella S. Database tools in genetic diseases research. Genomics. 2012;101:75–85. pii: S0888-7543(12)00209-1.

    Article  Google Scholar 

  7. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ. ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res. 2013;41:D56–63.

    Article  PubMed  Google Scholar 

  8. Kersbergen P, van Duijn K, Kloosterman AD, den Dunnen JT, Kayser M, de Knijff P. Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genet. 2009;10:69. doi:10.1186/1471-2156-10-69.

    Article  PubMed  Google Scholar 

  9. Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, et al. Estimating human age from T-cell DNA rearrangements. Curr Biol. 2010;20(22):R970–1.

    Article  PubMed  CAS  Google Scholar 

  10. Ou X-l, Gao J, Wang H, Wang H-s, Lu H-l, Sun HY. Predicting human age with bloodstains by sjTREC quantification. PLoS One. 2012;7(8):e42412.

    Article  PubMed  CAS  Google Scholar 

  11. Liu F, Wollstein A, Hysi PG, Ankra-Badu GA, Spector TD, Park D, et al. Digital quantification of human eye color highlights genetic association of three new loci. PLoS Genet. 2010;6:e1000934.

    Article  PubMed  Google Scholar 

  12. Draus-Barini J, Walsh S, Pośpiech E, Kupiec T, Głąb H, Branicki W, et al. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains. Investig Genet. 2013;4(1):3.

    Article  PubMed  CAS  Google Scholar 

  13. Keating B, Bansal AT, Walsh S, Millman J, Newman J, Kidd K, International Visible Trait Genetics (VisiGen) Consortium, et al. First all-in-one diagnostic tool for DNA intelligence: genome-wide inference of biogeographic ancestry, appearance, relatedness, and sex with the identitas v1 forensic chip. Int J Legal Med. 2013;127:559–72.

    Article  PubMed  Google Scholar 

  14. Ackerman MJ, Schroeder JJ, Berry R, Schaid DJ, Porter CJ, Michels VV, et al. A novel mutation in KVLQT1 is the molecular basis of inherited long QT syndrome in a near drowning family. Pediatr Res. 1998;44:148–53.

    Article  PubMed  CAS  Google Scholar 

  15. Ackerman MJ, Tester DJ, Porter CJ, Edwards WD. Molecular diagnosis of the inherited long QT syndrome in a woman who died after near-drowning. N Engl J Med. 1999;341:1121–5.

    Article  PubMed  CAS  Google Scholar 

  16. Boczek NJ, Tester DJ, Ackerman MJ. The molecular autopsy: an indispensable step following sudden cardiac death in the young? Herzschrittmacherther Elektrophysiol. 2012;23:167–73.

    Article  PubMed  Google Scholar 

  17. Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for post-mortem genetic testing. Mayo Clin Proc. 2012;87(6):524–39.

    Article  PubMed  CAS  Google Scholar 

  18. Launiainen T, Sajantila A, Rasanen I, Vuori E, Ojanperä I. Adverse interaction of warfarin and paracetamol: evidence from a post-mortem study. Eur J Clin Pharmacol. 2010;66(1):97–103.

    Article  PubMed  CAS  Google Scholar 

  19. Druid H, Holmgren P, Carlsson B, Ahlner J. Cytochrome P450 2D6 (CYP2D6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. Forensic Sci Int. 1999;99(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  20. Musshoff F, Stamer UM, Madea B. Pharmacogenetics and forensic toxicology. Forensic Sci Int. 2010;203(1–3):53–62.

    Article  PubMed  CAS  Google Scholar 

  21. Sajantila A, Palo JU, Ojanperä I, Davis C, Budowle B. Pharmacogenetics in medico-legal context. Forensic Sci Int. 2010;203(1–3):44–52.

    Article  PubMed  CAS  Google Scholar 

  22. Neuvonen AM, Palo JU, Sajantila A. Post-mortem ABCB1 genotyping reveals an elevated toxicity for female digoxin users. Int J Legal Med. 2011;125(2):265–9.

    Article  PubMed  Google Scholar 

  23. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER). Guidance for industry: E15 definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. 2008. http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm129296.pdf. Last accessed 11 Apr 2013.

  24. Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev. 2008;40(2):187–224.

    Article  CAS  Google Scholar 

  25. Garrod AE. The incidence of alcaptonuria: a study in chemical individuality. Lancet. 1902;160:1616–1620.

    Article  Google Scholar 

  26. Hockwald RS, Arnold J, Clayman CB, Alving AS. Toxicity of primaquine in Negroes. J Am Med Assoc. 1952;149:1568–70.

    Article  PubMed  CAS  Google Scholar 

  27. Carson PE, Flanagan CL, Ickes CE, Alving AS. Enzymatic deficiency in primaquine- sensitive erythrocytes. Science. 1956;124:484–5.

    Article  PubMed  CAS  Google Scholar 

  28. Hughes HB, Biehl JP, Jones AP, Schmidt LH. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am Rev Tuberc. 1954;70:266–73.

    PubMed  CAS  Google Scholar 

  29. Evans DA, Manley KA, McKusick VA. Genetic control of isoniazid metabolism in man. Br Med J. 1960;2:485–91.

    Article  PubMed  CAS  Google Scholar 

  30. Lehmann H, Ryan E. The familial incidence of low pseudocholinesterase level. Lancet. 1956;271:124.

    Article  PubMed  CAS  Google Scholar 

  31. Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem Physiol. 1957;35(12):1305–20.

    Article  PubMed  CAS  Google Scholar 

  32. Motulsky AG. Drug reactions enzymes, and biochemical genetics. J Am Med Assoc. 1957;165(7):835–7.

    Article  PubMed  CAS  Google Scholar 

  33. Vogel F. Moderne probleme der humangenetik. Ergebn Inn Med Kinderheilk. 1959;12:52–125.

    Article  Google Scholar 

  34. Marshall A. Genset-Abbott deal heralds pharmacogenomics era. Nat Biotechnol. 1997;15:829–30.

    Article  PubMed  CAS  Google Scholar 

  35. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286:487–91.

    Article  PubMed  CAS  Google Scholar 

  36. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364:1144–53.

    Article  PubMed  CAS  Google Scholar 

  37. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet. 1977;2:584–6.

    Article  PubMed  CAS  Google Scholar 

  38. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol. 1979;16:183–7.

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988;331:442–6.

    Article  PubMed  CAS  Google Scholar 

  40. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

    Article  PubMed  CAS  Google Scholar 

  41. World Health Organisation. Medicines: safety of medicines – adverse drug reactions. Fact sheet N°293. 2008. http://www.who.int/mediacentre/factsheets/fs293/en/index.html. Last accessed 11 Apr 2013.

  42. Bates DW, Leape LL, Petrycki S. Incidence and preventability of adverse drug events in hospitalized adults. J Gen Intern Med. 1993;8(6):289–94.

    Article  PubMed  CAS  Google Scholar 

  43. Pirmohamed M, Breckenridge AM, Kitteringham NR, Park BK. Adverse drug reactions. BMJ. 1998;316(7140):1295–8.

    Article  PubMed  CAS  Google Scholar 

  44. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356(9237):1255–9.

    Article  PubMed  CAS  Google Scholar 

  45. WHO-Uppsala Monitoring Centre. www.who-umc.org. Last accessed 11 Apr 2013.

  46. International Society of Pharmacoepidemiology. www.pharmacoepi.org. Last accessed 11 Apr 2013.

  47. Launiainen T, Rasanen I, Vuori E, Ojanperä I. Fatal venlafaxine poisonings are associated with a high prevalence of drug interactions. Int J Legal Med. 2011;125(3):349–58.

    Article  PubMed  Google Scholar 

  48. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279:1200–5.

    Article  PubMed  CAS  Google Scholar 

  49. Ebbesen J, Buajordet I, Erikssen J, Brors O, Hilberg T, Svaar H, Sandvik L. Drug-related deaths in a department of internal medicine arch. Intern Med. 2001;161:2317–23.

    Article  CAS  Google Scholar 

  50. Pirmohamed M, James S, Meakin S, Grenn C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. Br Med J. 2004;329:15–9.

    Article  Google Scholar 

  51. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet. 2006;368(9536):704.

    Article  PubMed  Google Scholar 

  52. Hutson S. Pharmacogenetics raises new legal questions. Nat Med. 2010;16:729.

    Article  PubMed  CAS  Google Scholar 

  53. Wong SH, Happy C, Blinka D, Gock S, Jentzen JM, Donald Hon J, Coleman H, Jortani SA, Lucire Y, Morris-Kukoski CL, Neuman MG, Orsulak PJ, Sander T, Wagner MA, Wynn JR, Wu AH, Yeo KT. From personalized medicine to personalized justice: the promises of translational pharmacogenomics in the justice system. Pharmacogenomics. 2010;11(6):731–7.

    Article  PubMed  CAS  Google Scholar 

  54. World Health Organisation. International statistical classification of diseases and related health problems – 10th revision- (ICD-10), Instruction manual, vol. 2. Geneva: World Health Organisation; 1993.

    Google Scholar 

  55. Lahti R. From findings to statistics: an assessment of Finnish medical cause-of-death information in relation to underlying-cause coding. Academic dissertation. Helsinki University Printing House; 2005. http//e-thesis.helsinki.fi.

  56. Cohle SD, Sampson BA. The negative autopsy: sudden cardiac death or other? Cardiovasc Pathol. 2001;10:219–22.

    Article  PubMed  CAS  Google Scholar 

  57. Corrado D, Basso C, Thiene G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc Res. 2001;50:399–408.

    Article  PubMed  CAS  Google Scholar 

  58. Basso C, Calabrese F, Corrado D, Thiene G. Post-mortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res. 2001;50:290–300.

    Article  PubMed  CAS  Google Scholar 

  59. Chandra N, Bastiaenen R, Papadakis M, Sharma S. Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol. 2013;61(10):1027–40.

    Article  PubMed  Google Scholar 

  60. Tomson T, Nashef L, Ryvlin P. Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 2008;7(11):1021–31.

    Article  PubMed  Google Scholar 

  61. Kinney HC, Rognum TO, Nattie EE, Haddad GG, Hyma B, McEntire B, Paterson DS, Crandall L, Byard RW. Sudden and unexpected death in early life: proceedings of a symposium in honor of Dr. Henry F. Krous. Forensic Sci Med Pathol. 2012;8(4):414–25.

    Article  PubMed  Google Scholar 

  62. Ojanperä I, Kolmonen M, Pelander A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Biochem. 2012;403:1203–20.

    Google Scholar 

  63. Pounder D, Jones GR. Post-mortem drug redistribution – a toxicological nightmare. Forensic Sci Int. 1990;45:253–63.

    Article  PubMed  CAS  Google Scholar 

  64. Koski A. Interpretation of post-mortem toxicology results. Academic dissertation. Helsinki University Printing House. 2005.http://e-thesis.helsinki.fi.

  65. Petersen EE, Rasmussen SA, Daniel KL, Yazdy MM, Honein MA. Prescription medication borrowing and sharing among women of reproductive age. J Womens Health. 2008;17:1073–80.

    Article  Google Scholar 

  66. Zaracostas J. Misuse of prescription drugs could soon exceed that of illicit narcotics. UN paner wans. BMJ. 2007;334:444.

    Article  Google Scholar 

  67. Vuori E, Henry JA, Ojanpera I, Nieminen R, Savolainen T, Wahlsten P, Jantti M. Death following ingestion of MDMA (ecstasy) and moclobemide. Addiction. 2003;98:365–8.

    Article  PubMed  Google Scholar 

  68. Koski A, Ojanperä I, Vuori E. Interaction of alcohol and drugs in fatal poisonings. Hum Exp Toxicol. 2003;22(5):281–7.

    Article  PubMed  Google Scholar 

  69. Madea B, Musshoff F, Preuss J. Medical negligence in drug associated deaths. Forensic Sci Int. 2009;190(1–3):67–73.

    Article  PubMed  CAS  Google Scholar 

  70. Strandell J, Bate A, Lindquist M, Edwards IR, Swedish, Finnish, Interaction X-referencing Drug-drug Interaction Database (SFINX Group). Drug-drug interactions – a preventable patient safety issue? Br J Clin Pharmacol. 2008;65(1):144–6.

    Article  PubMed  Google Scholar 

  71. Häkkinen M, Launiainen T, Vuori E, Ojanperä I. Benzodiazepines and alcohol are associated with cases of fatal buprenorphine poisoning. Eur J Clin Pharmacol. 2012;68(3):301–9.

    Article  PubMed  Google Scholar 

  72. Launiainen T, Vuori E, Ojanperä I. Prevalence of adverse drug combinations in a large post-mortem toxicology database. Int J Legal Med. 2009;123(2):109–15.

    Article  PubMed  Google Scholar 

  73. King LA, Moffat AC. Hypnotics and sedatives: and index of fatal toxicity. Lancet. 1981;1(8216):387–8.

    Article  PubMed  CAS  Google Scholar 

  74. King LA, Moffat AC. A possible index of fatal drug toxicity in humans. Med Sci Law. 1983;23(3):193–8.

    PubMed  CAS  Google Scholar 

  75. Ackerman MJ, Tester DJ, Driscoll DJ. Am J Forensic Med Pathol. 2001;22:105–11.

    Article  PubMed  CAS  Google Scholar 

  76. Sajantila A, Lunetta P, Ojanperä I. Post-mortem pharmacogenetics – toward molecular autopsies. In: Wong SHY, Linder MW, Valdes R, editors. Phamacogenomics and proteomics – enabling the practice of personalized medicine. Washington, DC: American Association for Clinical Chemistry; 2006. p. 301–9.

    Google Scholar 

  77. Andresen H, Augustin C, Streichert T. Toxicogenetics-cytochrome P450 microarray analysis in forensic cases focusing on morphine/codeine and diazepam. Int J Legal Med. 2013;127(2):395–404.

    Article  PubMed  CAS  Google Scholar 

  78. Levo A, Koski A, Ojanperä I, Vuori E, Sajantila A. Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int. 2003;135:9–15.

    Article  PubMed  CAS  Google Scholar 

  79. Koski A, Sistonen J, Ojanpera I, Gergov M, Vuori E, Sajantila A. CYP2D6 and CYP2C19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int. 2006;158(2–3):177–83.

    Article  PubMed  CAS  Google Scholar 

  80. Buchard A, Linnet K, Johansen SS, Munkholm J, Fregerslev M, Morling N. Post-mortem blood concentrations of R- and S-enantiomers of methadone and EDDP in drug users: influence of co-medication and p-glycoprotein genotype. J Forensic Sci. 2010;55(2):457–63.

    Article  PubMed  CAS  Google Scholar 

  81. Zackrisson AL, Carlsson B, Josefsson M, Bengtsson F, Ahlner J, Kugelberg FC. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in post-mortem femoral blood. Forensic Sci Int. 2012;214(1–3):124–34.

    PubMed  Google Scholar 

  82. Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjöqvist F. J Pharmacol Exp Ther. 1995;274(1):516–20.

    PubMed  CAS  Google Scholar 

  83. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442–73.

    Article  PubMed  CAS  Google Scholar 

  84. Kirchheiner J. CYP2D6 phenotype prediction from genotype: which system is the best? Clin Pharmacol Ther. 2008;83:225–7.

    Article  PubMed  CAS  Google Scholar 

  85. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83(2):234–42.

    Article  PubMed  CAS  Google Scholar 

  86. Koski A, Ojanperä I, Sistonen J, Vuori E, Sajantila A. A fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol. 2007;28(3):259–61.

    Article  PubMed  Google Scholar 

  87. Sallee FR, DeVane CL, Ferrell RE. Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency. J Child Adolesc Psychopharmacol. 2000;10(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  88. Jannetto PJ, Wong SH, Gock SB, Laleli-Sahin E, Schur BC, Jentzen JM. Pharmacogenomics as molecular autopsy for post-mortem forensic toxicology: genotyping cytochrome P450 2D6 for oxycodone cases. J Anal Toxicol. 2002;26:438–47.

    Article  PubMed  CAS  Google Scholar 

  89. Wong SH, Wagner MA, Jentzen JM, Schur C, Bjerke J, Gock SB, Chang CC. Pharmacogenomics as an aspect of molecular autopsy for forensic pathology/toxicology: does genotyping CYP 2D6 serve as an adjunct for certifying methadone toxicity? J Forensic Sci. 2003;48(6):1406–15.

    PubMed  CAS  Google Scholar 

  90. Jin M, Gock SB, Jannetto PJ, Jentzen JM, Wong SH. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol. 2005;29(7):590–8.

    Article  PubMed  CAS  Google Scholar 

  91. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med. 2004;351(27):2827–31.

    Article  PubMed  CAS  Google Scholar 

  92. Barbui C, Hotopf M. Amitriptyline v. the rest: still the leading antidepressant after 40 years of randomised controlled trials. Br J Psychiatry. 2001;178:129–44.

    Article  PubMed  CAS  Google Scholar 

  93. Jones AW, Kugelberg FC, Holmgren A, Ahlner J. Drug poisoning deaths in Sweden show a predominance of ethanol in mono-intoxications, adverse drug-alcohol interactions and poly-drug use. Forensic Sci Int. 2011;206(1–3):43–51.

    Article  PubMed  CAS  Google Scholar 

  94. Shimoda K, Someya T, Yokono A, Morita S, Hirokane G, Takahashi S, Okawa M. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol. 2002;22(4):371–8.

    Article  PubMed  CAS  Google Scholar 

  95. Kawanishi C, Lundgren S, Ågren H, Bertilsson L. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol. 2004;59:803–7.

    Article  PubMed  CAS  Google Scholar 

  96. Zackrisson AL, Lindblom B, Ahlner J. High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther. 2010;88(3):354–9.

    Article  PubMed  CAS  Google Scholar 

  97. Ahlner J, Zackrisson AL, Lindblom B, Bertilsson L. CYP2D6, serotonin and suicide. Pharmacogenomics. 2010;11(7):903–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Sajantila MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Sajantila, A. (2014). Medicolegal Autopsies and Pharmacogenetics. In: Rutty, G. (eds) Essentials of Autopsy Practice. Springer, London. https://doi.org/10.1007/978-1-4471-5270-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5270-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5269-9

  • Online ISBN: 978-1-4471-5270-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics