Skip to main content

Selected Active Power Filter Control Algorithms

  • Chapter
  • First Online:
Book cover Digital Signal Processing in Power Electronics Control Circuits

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter focuses on the analysis and implementation of control circuits for shunt active power filters. The selected digital signal processing algorithms which have been designed for the control of active power are investigated. First considered are algorithms with first harmonics detectors based on: IIR filter, lattice wave digital filter, sliding DFT, sliding Goertzel, and moving DFT. Next considered is a modified classical control circuit based on instantaneous power theory. Here problems of the active power filter dynamics are discussed. Then follows a description of a modified predictive circuit to eliminate dynamic compensation errors for predictable changes in the load current. The sections that follow describe a control circuit with filter banks which allow the selection of compensated harmonics. Under consideration are filter banks based on: moving DFT algorithms and instantaneous power theory. To conclude this chapter a multirate active power filter is considered, which has a fast response to sudden changes in the load current. The presented algorithms allow a decrease in line current \({ THD}\) ratio from a dozen or so percent to a few percent. This chapter presents simulation and experimental results obtained by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Analog Devices (1994) AC vector processor AD2S100. Analog Devices Inc, Norwood

    Google Scholar 

  2. Akagi H, Kanazawa Y, Nabae A (1982) Principles and compensation effectiveness of a instantaneous reactive power compensator devices. In: Meeting of the power semiconductor converters researchers-IEE-Japan, SPC-82-16 (in Japanese)

    Google Scholar 

  3. Akagi H, Kanazawa Y, Nabae A (1983) Generalized theory of instantaneous reactive power and its applications. Trans IEE-Jpn 103(7):483–490

    Google Scholar 

  4. Akagi H, Kanazawa Y, Nabae A (1984) Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans Ind Appl 1A 20(3):625–630

    Article  Google Scholar 

  5. Akagi H (1996) New trends in active filters for power conditioning. IEEE Trans Ind Appl 32(6):1312–1322

    Article  Google Scholar 

  6. Akagi H, Watanabe EH, Aredes M (2007) Instantaneous power theory and applications to power conditioning. Wiley, New York

    Book  Google Scholar 

  7. Aredes M (1996) Active power line conditioners. PhD thesis, Technische Universitat Berlin, Berlin

    Google Scholar 

  8. Arriens HL (2006) (L)WDF Toolbox for MATLAB reference guide. Technical report, Delft University of Technology, WDF Toolbox RG v1 0.pdf

    Google Scholar 

  9. Arriens HL (2006) (L)WDF Toolbox for MATLAB, user’s guide. Technical report, Delft University of Technology, WDF Toolbox UG v1 0.pdf

    Google Scholar 

  10. Asiminoaei L, Blaabjerg F, Hansen S (2007) Detection is key: harmonic detection methods for active power filter applications. IEEE Ind Appl Mag 13(4):22–33

    Article  Google Scholar 

  11. Benysek G, Pasko M (eds) (2012) Power theories for improved power quality. Springer, London

    Google Scholar 

  12. Bossche AV, Valchev VC (2005) Inductors and transformers for power electronics. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Buso S, Mattavelli P (2006) Digital control in power electronics. Morgan & Claypool, Princeton

    Google Scholar 

  14. Czarnecki LS (2005) Powers in electrical circuits with nonsinusoidal voltages and currents. Publishing Office of the Warsaw University of Technology, Poland

    Google Scholar 

  15. Czarnecki LS (1984) Interpretation, identification and modification of the energy properties of single-phase circuits with nonsinusoidal waveforms. Silesian University of Technology, Gliwice (Elektryka 19)

    Google Scholar 

  16. Czarnecki LS (1987) What is wrong with the Budeanu concept of reactive and distortion powers and why is should be abandoned? IEEE Trans Instrum Meas 36(3):673–676

    Google Scholar 

  17. Fryze S (1966) Selected problems of basics of electrical engineering. PWN, Warszawa

    Google Scholar 

  18. Fryze S (1931) Active, reactive and apparent power in non-sinusoidal systems. Przegl Elektrotech (Electr Rev) 7:193–203

    Google Scholar 

  19. Fujielectric (2011) 2MBI159HH-120-50 high speed module 1200 V/150 A. Data sheet, Fujielectric

    Google Scholar 

  20. Ghosh A, Ledwich G (2002) Power quality enhancement using custom power devices. Kluwer Academic, Boston

    Book  Google Scholar 

  21. Gyugyi L, Strycula EC (1976) Active AC power filters. In: Proceedings of the IEEE industry applications annual meeting, pp 529–535

    Google Scholar 

  22. Holmes DG, Lipo TA (2003) Pulse width modulation for power converters: principles and practice. IEEE, Piscataway

    Book  Google Scholar 

  23. Jacobsen E, Lyons R (2003) The sliding DFT. IEEE Signal Process Mag 20(2):74–80

    Article  Google Scholar 

  24. Jacobsen E, Lyons R (2004) An update to the sliding DFT. IEEE Signal Process Mag 21:110–111

    Article  Google Scholar 

  25. Kazimierkowski M, Malesani L (1998) Current control techniques for three-phase voltage-source converters: a survey. IEEE Trans Ind Electron 45(5):691–703

    Google Scholar 

  26. Kazmierkowski MP, Kishnan R, Blaabjerg F (2002) Control in power electronics. Academic, San Diego

    Google Scholar 

  27. Kim H, Blaabjerg F, Bak-Jensen B, Jaeho C (2002) Instantaneous power compensation in three-phase systems by using p-q-r theory. IEEE Trans Power Electron 17(5):701–710

    Article  Google Scholar 

  28. Mariethoz S, Rufer A (2002) Open loop and closed loop spectral frequency active filtering. IEEE Trans Power Electron 17(4):564–573

    Article  Google Scholar 

  29. Marks J, Green T (2002) Predictive transient-following control of shunt and series active power filter. IEEE Trans Power Electron 17(4):574–584

    Article  Google Scholar 

  30. Mattavelli P (2001) A closed-loop selective harmonic compensation for active filters. IEEE Trans Ind Appl 37(1):81–89

    Article  Google Scholar 

  31. Mitsubishi (2000) Mitsubishi intelligent power modules, PM300DSA120. Data sheet, Mitsubishi

    Google Scholar 

  32. Nakajima T, Masada E (1998) An active power filter with monitoring of harmonic spectrum. In: European conference on power electronics and applications EPE, Aachen

    Google Scholar 

  33. Pasko M, Maciazek M (2012) Principles of electrical power control. In: Benysek G, Pasko M (eds) Power theories for improved power quality. Springer, London, pp 13–47

    Google Scholar 

  34. Singh B, Al-Haddad K, Chandra A (1999) A review of active filters for power quality improvement. IEEE Trans Ind Electron 46(5):960–971

    Article  Google Scholar 

  35. Sozanski (2003) Active power filter control algorithm using the sliding DFT. In: Workshop proceedings, Signal Processing 2003, Poznan, Poland, pp 69–73

    Google Scholar 

  36. Sozanski K (2004) Non-causal current predictor for active power filter. In: Conference proceedings: nineteenth annual IEEE applied power electronics conference and exhibition, APEC 2004, Anaheim, USA

    Google Scholar 

  37. Sozanski K (2004), Harmonic compensation using the sliding DFT algorithm. In: Conference proceedings, 35rd annual IEEE power electronics specialists conference, PESC 2004, Aachen, Germany

    Google Scholar 

  38. Sozanski K (2006) Harmonic compensation using the sliding DFT algorithm for three-phase active power filter. Electr Power Qual Utilization J 12(2):15–20

    Google Scholar 

  39. Sozanski K (2006) Sliding DFT control algorithm for three-phase active power filter. In: Conference proceedings, 21rd annual IEEE applied power electronics conference, APEC 2006, Dallas, Texas, USA

    Google Scholar 

  40. Sozanski K (2007) The shunt active power filter with better dynamic performance. In: Conference proceedings, PowerTech, 2007 conference, Lausanne, Switzerland

    Google Scholar 

  41. Sozanski K (2008) Improved shunt active power filters. Przegl Elektrotech (Electr Rev) 45(11):290–294

    Google Scholar 

  42. Sozanski K (2008) Shunt active power filter with improved dynamic performance. In: Conference proceedings: 13th international power electronics and motion control conference EPE-PEMC 2008, Poznan, Poland, pp 2018–2022

    Google Scholar 

  43. Sozanski K (2011) Control circuit for active power filter with an instantaneous reactive power control algorithm modification. Przegl Elektrotech (Electr Rev) 1:95–113

    Google Scholar 

  44. Sozanski K (2012) Realization of a digital control algorithm. In: Benysek G, Pasko M (eds) Power theories for improved power quality. Springer, London, pp 117–168

    Chapter  Google Scholar 

  45. Sozanski K, Strzelecki R, Kempski A (2002) Digital control circuit for active power filter with modified instantaneous reactive power control algorithm, In: Conference proceedings, IEEE 33rd annual IEEE power electronics specialists conference, PESC 2002, Cairns, Australia

    Google Scholar 

  46. Sozanski K, Fedyczak Z (2003) Active power filter control algorithm based on filter banks. In: Conference proceedings, Bologna PowerTech: 2003 IEEE Bologna, Italy

    Google Scholar 

  47. Sozanski K, Fedyczak Z, (2003) A filter bank solution for active power filter control algorithms. In: Conference proceedings, 2003 IEEE 34th annual power electronics specialists conference: PESC ’03, Acapulco, Mexico

    Google Scholar 

  48. Strzelecki R, Fedyczak Z, Sozanski K, Rusinski J (2000) Active power filter EFA1. Technical report, Instytut Elektrotechniki Przemyslowej, Politechnika Zielonogorska (in Polish)

    Google Scholar 

  49. Strzelecki R, Sozanski K (1996) Control circuit with digital signal processor for hybrid active power filter. In: Conference proceedings of SENE 1996, sterowanie w energoelektronce i napedzie elektrycznym (in Polish)

    Google Scholar 

  50. Instruments Texas (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232 digital signal controllers (DSCs). Data manual, Texas Instruments Inc

    Google Scholar 

  51. Texas Instruments (2010) C2000 teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc

    Google Scholar 

  52. Watanabe S, Boyagoda P, Iwamoto H, Nakaoka M, Takanoet H (1999) Power conversion PWM amplifier with two paralleled four quadrant chopper for MRI gradient coil magnetic field current tracking implementation. In: Conference proceedings, 30th annual IEEE power electronics specialists conference, PESC, 1999, Charleston, South Carolina, USA

    Google Scholar 

  53. Wojciechowski D, Strzelecki R (2007) Sensorless predictive control of three-phase parallel active filter. In: Conference proceedings, AFRICON 2007, Windhoek

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Sozański .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sozański, K. (2013). Selected Active Power Filter Control Algorithms. In: Digital Signal Processing in Power Electronics Control Circuits. Power Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5267-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5267-5_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5266-8

  • Online ISBN: 978-1-4471-5267-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics