Skip to main content

Selected Methods of Signal Filtration and Separation and Their Implementation

  • Chapter
  • First Online:
Digital Signal Processing in Power Electronics Control Circuits

Part of the book series: Power Systems ((POWSYS))

  • 3503 Accesses

Abstract

Selected methods of filtration and separation of signals and their implementation using digital signal processors are presented in this section. At the beginning of the chapter, there is discussion of classical finite impulse response digital filters and infinite impulse response digital filters. However, special attention is paid to lattice wave digital filters, which are excellent in implementation. Considered as modern digital signal processors are the lattice modified wave digital filters. Presented in the next section are infinite impulse response digital filters with linear phase, where there is discussion of the their causal realizations. In the following section, these are presented multirate circuits, circuits for reducing the sample rate–decimators, and circuits for increasing the sample rate–interpolators. Consideration is given to interpolator circuits based on lattice wave digital filters. After this a section dedicated to digital filter banks follows. Particular attention has been paid to digital filter banks useful for power electronics applications: wave digital filters, sliding DFT, moving DFT, and strictly complementary. There are presented some implementations of digital filters using digital signal processors. The last part of this chapter is devoted to selected digital signal processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Analog Devices (1994) ADSP-21000 family application handbook, vol 1. Analog Devices, Inc., Norwood

    Google Scholar 

  2. Analog Devices (2004) ADSP-2106x SHARC Processor user’s manual. Analog Devices, Inc., Norwood

    Google Scholar 

  3. Analog Devices (1999) Interfacing the ADSP-21065L SHARC DSP to the AD1819A AC-97 soundport codec. Analog Devices, Inc., Norwood

    Google Scholar 

  4. Analog Devices (2003) ADSP-21065L EZ-KIT lite evaluation system manual. Analog Devices, Inc., Norwood

    Google Scholar 

  5. Analog Devices (2005) ADSP-2136x SHARC processor hardware reference. Rev 1.0. Analog Devices Inc., Norwood

    Google Scholar 

  6. Analog Devices (2007) ADSP-21364 Processor EZ-KIT lite evaluation system manual. Rev 3.2, Analog Devices Inc., Norwood

    Google Scholar 

  7. Arriens HL (2006) (L)WDF Toolbox for MATLAB reference guide. Technical report, Delft University of Technology, WDF Toolbox RG v1 0.pdf.

    Google Scholar 

  8. Arriens HL (2006) (L)WDF Toolbox for MATLAB, user’s guide. Technical report, Delft University of Technology, WDF Toolbox UG v1 0.pdf.

    Google Scholar 

  9. Aziz SA (2004) Efficient arbitrary sample rate conversion using zero phase IIR. In: Proceedings of AES 116th Convention, Berlin, Germany Audio Engineering Society

    Google Scholar 

  10. Aziz SA (2007) Sample rate converter having a zero phase filter. US Patent, US 7,167,113 B2

    Google Scholar 

  11. Bagci B (2003) Programming and use of TMS320F2812 DSP to control and regulate power electronic converters. Master’s thesis, University of Applied Science Cologne

    Google Scholar 

  12. Bateman A, Paterson-Stephens I (2002) The DSP handbook: algorithms, applications and design techniques. Prentice Hall, Englewood Cliffs

    Google Scholar 

  13. Bruun G (1978) Z-transform DFT filters and FFT’s. IEEE Trans Acoust Speech Signal Process 26(1):56–63

    Article  Google Scholar 

  14. Chassaing R (2005) Digital signal processing and applications with the C6713 and C6416 DSK. John Wiley & Sons, Inc., New York

    Google Scholar 

  15. Chassaing R, Reay D (2008) Digital signal processing and applications with the C6713 and C6416 DSK. John Wiley & Sons, Inc., New York

    Google Scholar 

  16. Chen WK (ed.) (1995) The circuits and filters handbook. IEEE Press, New York

    Google Scholar 

  17. Crochiere RE, Rabiner LR (1983) Multirate digital signal processing. Prentice Hall Inc., Upper Saddle River

    Google Scholar 

  18. Czarnach R (1982) Recursive processing by noncausal digital filters. IEEE Trans Acoust Speech Signal Process 30(3):363–370

    Article  Google Scholar 

  19. Dabrowski A (1988) Pseudopower recovery in multirate signal processing (Odzysk pseudomocy użtecznej w wieloszybkościowym przetwarzaniu sygnlów), vol 198. Wydawnictwo Politechniki Poznanskiej, Poznan (in Polish)

    Google Scholar 

  20. Dabrowski A (1997) Multirate and multiphase switched-capacitor circuits. Chapman & Hall, London

    Google Scholar 

  21. Dabrowski A (ed) (1997) Digital Signal Processing Using Digital Signal Processors. Wydawnictwo Politechniki Poznañskiej, Poznañ (in Polish)

    Google Scholar 

  22. Dabrowski A, Fettweis A (1987) Generalized approach to sampling rate alteration in wave digital filters. IEEE Transa. Circuit Syst Theory 34(6):678–686

    Article  Google Scholar 

  23. Dabrowski A, Sozanski K (1998) Implementation of multirate modified wave digital filters using digital signal processors. XXI Krajowa Konferencja Teoria Obwodów i Uklady Elektroniczne, KKTUIE98, Poznan

    Google Scholar 

  24. Dahnoun N (2000) Digital signal processing implementation using the TMS320C6000 DSP platform. Pearson, Boston

    Google Scholar 

  25. Translation Data (2009) Benefits of simultaneous data acquisition modules. Technical report, Data Translation

    Google Scholar 

  26. Delft University of Technology (2012) (L)WDF toolbox for Matlab. Delft University of Technology, Technical report

    Google Scholar 

  27. Embree PM, Kimble B (1991) C language algorithms for digital signal processing. Prentice Hall Inc., Upper Saddle River

    Google Scholar 

  28. Farhang-Boroujeny B, Lee Y, Ko C (1996) Sliding transforms for efficient implementation of transform domain adaptive filters. Signal Processing, Elsevier 52(1):83–96

    Article  MATH  Google Scholar 

  29. Fettweis A (1971) Digital filter structures related to classical filter networks. AEU, Band 25. Heft 2:79–89

    Google Scholar 

  30. Fettweis A (1972) Pseudo-passivity, sensitivity, and stability of wave digital filters. IEEE Trans. Circuit Theory 19(6):668–673

    Article  Google Scholar 

  31. Fettweis A (1982) Transmultiplexers with either analog conversion circuits, wave digital filters, or SC filters: a review. IEEE Trans Commun 30(7):1575–1586

    Article  Google Scholar 

  32. Fettweis A (1986) Wave digital filters: theory and practice. Proc IEEE 74(2):270–327

    Article  Google Scholar 

  33. Fettweis A (1989) Modified wave digital filters for improved implementation by commercial digital signal processors. Signal Process 16(3):193–207

    Article  MathSciNet  Google Scholar 

  34. Fettweis A, Levin H, Sedlmeyer A (1974) Wave digital lattice filters. Int J Circuit Theory Appl 2(2):203–211

    Article  Google Scholar 

  35. Fettweis A, Nossek J, Meerkotter K (1985) Reconstruction of signals after filtering and sampling rate reduction. IEEE Trans Acoust Speech Signal Process 33(4):893–902

    Article  Google Scholar 

  36. Flige N (1994) Multirate digital signal processing. John Wiley & Sons, New York

    Google Scholar 

  37. Gazsi L (1985) Explicit formulas for lattice wave digital filters. IEEE Trans Circuits Syst 32(1):68–88

    Article  Google Scholar 

  38. Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Monthly 65:34–35

    Article  MathSciNet  MATH  Google Scholar 

  39. Hamming R (1989) Digital filters. Dover Publications Inc., New York

    Google Scholar 

  40. Izydorczyk J, Konopacki J (2003) Analog and digital filters. Wydawnictwo Pracowni Komputerowej, Gliwice (in Polish)

    Google Scholar 

  41. Jacobsen E, Lyons R (2003) The sliding DFT. IEEE Signal Process Mag 20(2):74–80

    Google Scholar 

  42. Jacobsen E, Lyons R (2004) An update to the sliding DFT. IEEE Signal Process Mag 21:110–111

    Article  Google Scholar 

  43. Kuo S M, Lee B H (2001) Real-time digital signal processing, implementation, applications, and experiments with the TMS320C55X. John Wiley & Sons, New York

    Google Scholar 

  44. Kurosu A, Miyase S, Tomiyama S, Takebe T (2003) A technique to truncate IIR filter impulse response and its application to real-time implementation of linear-phase IIR filters. IEEE Trans Signal Process 51(5):1284–1292

    Article  MathSciNet  Google Scholar 

  45. Lawson S (1995) Wave digital filters. In: Chen W-K (ed) The circuits and filters handbook. IEEE Press, New York, pp 2634–2657

    Google Scholar 

  46. Lawson S, Mirzai A (1990) Wave digital filters. Ellis-Horwood, New York

    Google Scholar 

  47. Ledger D, Tomarakos J (1998) Using The low cost, high performance ADSP-21065L digital signal processor for digital audio applications. Revision 1.0, Analog Devices, Norwood

    Google Scholar 

  48. Lyons R (2004) Understanding digital signal processing, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  49. Lyons R, Bell A (2004) The swiss army knife of digital networks. IEEE Signal Process Mag 21(3):90–100

    Article  Google Scholar 

  50. Mitra S (2006) Digital signal processing: a computer-based approach. McGraw-Hill, New York

    Google Scholar 

  51. Oppenheim AV, Schafer RW (1999) Discrete-time signal processing. Prentice Hall, New Jersey

    Google Scholar 

  52. Orfanidis SJ (1996) ADSP-2181 experiments. http://www.ece.rutgers.edu/orfanidi/ezkitl/man.pdf. Accessed December 2012

  53. Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall, New Jersey

    Google Scholar 

  54. Oshana R (2005) DSP software development techniques for embedded and real-time systems. Newnes, London

    Google Scholar 

  55. Owen M (2007) Practical signal processing. Cambridge University Press, Cambridge

    Google Scholar 

  56. Pasko M, Walczak J (1999) Signal theory. Wydawnictwo Politechniki Slaskiej, Gliwice (in Polish)

    Google Scholar 

  57. Powell SR, Chau PM (1991) A technique for realizing linear phase IIR filters. IEEE Trans Signal Process 39(11):2425–2435

    Article  Google Scholar 

  58. Proakis JG, Manolakis DM (1996) Digital signal processing, principles, algorithms, and application. Prentice Hall Inc., New Jersey

    Google Scholar 

  59. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  60. Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall Inc., New Jersey

    Google Scholar 

  61. Rao D (2001) Circular buffering on TMS320C6000. Application Report, SPAR645A, Texas Instruments

    Google Scholar 

  62. Sozanski K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)

    Google Scholar 

  63. Sozanski K (2002) Implementation of modified wave digital filters using digital signal processors. In: Conference proceedings, 9th international conference on electronics. circuits and systems, ICECS 2002, pp 1015–1018

    Google Scholar 

  64. Sozanski (2003) Active power filter control algorithm using the sliding DFT. In: Workshop proceedings, signal processing 2003, Poznan, Poland, pp 69–73

    Google Scholar 

  65. Sozański K (2004), Harmonic compensation using the sliding DFT algorithm. In: Conference proceedings, 35rd annual IEEE power electronics specialists conference, PESC 2004, Aachen, Germany

    Google Scholar 

  66. Sozanski K (2008) Improved shunt active power filters. Przeglad Elektrotechniczny (Electrical Review) 45(11):290–294

    Google Scholar 

  67. Sozanski K (2010) Digital realization of a click modulator for an audio power amplifier. Przeglad Elektrotechniczny (Electric Review) 2010(2):353–357

    Google Scholar 

  68. Sozanski K (2012) Realization of a digital control algorithm. In: Benysek G, Pasko M (eds) Power theories for improved power quality. Springer-Verlag London, pp 117–168

    Google Scholar 

  69. Sozanski K, Strzelecki R, Fedyczak Z (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings, 2001 IEEE 32nd annual power electronics specialists conference-PESC 2001, pp 1245–1250

    Google Scholar 

  70. Tantaratana S (1995) Design of IIR filters. In: Chen WK (ed) The circuits and filters handbook. IEEE Press, New York

    Google Scholar 

  71. Instruments Texas (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232 digital signal controllers (DSCs). Data manual, Texas Instruments Inc

    Google Scholar 

  72. Texas Instruments (2010) C2000 Teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc

    Google Scholar 

  73. Texas Instruments (2011) TMS320C6745/C6747 DSP technical reference manual. SPRUH91A, Texas Instruments Inc

    Google Scholar 

  74. Texas Instruments (2011) TMS320C6746 Fixed/floating-point DSP, Data Sheet, SPRS591, Texas Instruments Inc

    Google Scholar 

  75. Texas Instruments (2012) C6000 Teaching materials. SSQC012, Texas Instruments Inc

    Google Scholar 

  76. Vaidyanathan PP (1992) Multirate systems and filter banks. Prentice Hall Inc., New Jersey

    Google Scholar 

  77. Venezuela RA, Constantindes AG (1982) Digital signal processing schemes for efficient interpolation and decimation. IEE Proc Part G(6):225–235

    Google Scholar 

  78. Vesterbacka M (1997) On implementation of maximally fast wave digital filters. Dissertations no. 487, Linköping University

    Google Scholar 

  79. Vesterbacka M, Palmkvist K, Wanhammar L (1996) Maximaly fast, bit-serial lattice wave digital filters. In: Proceedigs DSP Workshop ’96 IEEE, Loen, Norway, pp 207–210

    Google Scholar 

  80. Wanhammar L (1999) DSP integrated circuit. Academic Press, New York

    Google Scholar 

  81. Zielinski T (2005) Digital signal processing: from theory to application. Wydawnictwo Komunikacji i Lacznosci, Warsaw (in Polish)

    Google Scholar 

  82. Zolzer U (2008) Digital audio signal processing, John Wiley & Sons, Inc., New York

    Google Scholar 

  83. Zolzer U (ed) (2002) DAFX-Digital audio effects. John Wiley & Sons, Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Sozański .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sozański, K. (2013). Selected Methods of Signal Filtration and Separation and Their Implementation. In: Digital Signal Processing in Power Electronics Control Circuits. Power Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5267-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5267-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5266-8

  • Online ISBN: 978-1-4471-5267-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics