Skip to main content

Analog Signals Conditioning and Discretization

  • Chapter
  • First Online:
Digital Signal Processing in Power Electronics Control Circuits

Part of the book series: Power Systems ((POWSYS))

  • 3570 Accesses

Abstract

Chapter 2 is devoted to problems of analog signals acquisition for the digital control circuits of power electronics devices. In this chapter, the problems of the measurement in power electronics circuits are highlighted. Typical systems for current and voltage measurement are discussed. Particular attention is paid to galvanic isolation and the impact of a high slew rate in common mode voltage. A discussion is presented on the selection of the sample rate and number of bits. Consideration is given to the methods and circuit design to reduce quantization noise. Included is a discussion of noise shaping circuits useful for power electronics output circuits. Also included is a section on the impact of the phenomenon of jitter on the signal-to-noise ratio. In this chapter, there is also shown a method of calculating the resultant signal-to-noise ratio. Finally, in the end of this chapter a presentation of selected A/D converters suitable for use in power electronics circuits is made. Special attention is paid on simultaneously sampling A/D converters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABB (2012) ESM1000 General informations. Technical report, ABB

    Google Scholar 

  2. Allegro (2005) Current sensor: ACS752SCA-100. Technical report, Allegro MicroSystems Inc., ACS752100-DS Rev. 6

    Google Scholar 

  3. Allegro (2011) ACS756, fully integrated, hall effect-based linear current sensor IC with 3 kVRMS voltage isolation and a low-resistance current conductor. Data sheet, Allegro MicroSystems Inc.

    Google Scholar 

  4. Analog Devices (1996) AD215 120 kHz bandwidth, low distortion, isolation amplifier. Analog Devices Inc.

    Google Scholar 

  5. Analog Devices (2012) AD8210, High voltage, bidirectional current shunt monitor, Analog Devices Inc.

    Google Scholar 

  6. Devices Analog (2012) AD7606/AD7606-6/AD7606-4 8-/6-/4-channel DAS with 16-bit, bipolar input, simultaneous sampling ADC. Data sheet, Analog Devices Inc.

    Google Scholar 

  7. Attia JO (1999) Electronics and circuit analysis using Matlab. CRC Press, Boca Raton

    Google Scholar 

  8. Avago (2011) HCPL-7860/HCPL-786J optically isolated sigma-delta (S-D) modulator. Technical report, Avago Technologies, AV02-0409EN

    Google Scholar 

  9. Avago (2008) HCPL-7800A/HCPL-7800 isolation amplifier. Technical report, Avago Technologies, AV02-1436EN

    Google Scholar 

  10. Azeredo-Leme C (2011) Clock jitter effects on sampling: a tutorial. IEEE Circ Syst Mag 3:26–37

    Article  Google Scholar 

  11. Baggini A (ed) (2008) Handbook of power quality. Wiley-Interscience a John Wiley & Sons Inc., New York

    Google Scholar 

  12. Bossche AV, Valchev VC (2005) Inductors and transformers for power electronics. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Brannon B (2004) Sampled systems and the effects of clock phase noise and jitter. Application note AN-756, Technical report, Analog Devices Inc.

    Google Scholar 

  14. Brannon B, Barlow A (2006) Aperture uncertainty and ADC system performance. Application note AN-501, Technical report, Analog Devices Inc.

    Google Scholar 

  15. Carley RL, Schreier R, Temes GC (1997) Delta-sigma ADCs with multibit internal conveters. In: Norsworthy SR, Schreier R, Temes GC (eds) Delta-sigma data converters. Theory, design, and simulation. IEEE Press, New York

    Google Scholar 

  16. Candy J, Temes G (eds) (1992) Oversampling delta-sigma data converters. Theory, design, and simulation. IEEE Press, New York

    Google Scholar 

  17. Cataltepe T, Kramer AR, Larson LE, Temes GC Walden RH (1992) Digitaly corrected multi-bit \(\Sigma \varDelta \) data converters. IEEE Proceedings of ISCAS’89, May 1989. In: Candy JC, Temes G C (eds) Oversampling delta-sigma data converters theory, design, and simulation. IEEE Press, New York

    Google Scholar 

  18. ChenYoung (2011) Closed loop precise hall current sensor CYHCS-SH. Technical report, ChenYoung

    Google Scholar 

  19. Cummings J, Doogue MC, Friedrich AP (2007) Recent trends in hall effect current sensing (Rev. 1). AN295045, Technical report, Allegro MicroSystems Inc.

    Google Scholar 

  20. Cutler C (1960) Transmission system employing quantization. United States Patent 2,927,962

    Google Scholar 

  21. Data Translation (2008) The battle for data fidelity: understanding the SFDR spec. Technical report, Data Translation

    Google Scholar 

  22. Data Translation (2009) Benefits of simultaneous data acquisition modules. Technical report, Data Translation

    Google Scholar 

  23. Galton I (1997) Spectral shaping of cuircuit errors in digital-to-analog converters. IEEE Trans Circ Syst II Analog Digital Signal Process 44(10):789–797

    Article  Google Scholar 

  24. Hartley RVL (1928) Transmission of information. Bell Syst Tech J 7:535–563

    Google Scholar 

  25. Hartmann M, Biela J, Ertl H, Kolar JW (2009) Wideband current transducer for measuring ac signals with limited DC offset. IEEE Trans Power Electron (24)7:1776–1787

    Google Scholar 

  26. Holmes DG, Lipo TA (2003) Pulse width modulation for power converters: principles and practice. Institute of Electrical and Electronics Engineers Inc., New Jersey

    Google Scholar 

  27. Honeywell (2008) Current sensors line guide. Technical report, Honeywell International Inc.

    Google Scholar 

  28. Kester W (2004) Analog-digital Conversion. Analog Devices Inc., Norwood

    Google Scholar 

  29. Kester W (2005) The Data conversion handbook. Newnes, London

    Google Scholar 

  30. Kester W (2009) Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so you don’t get lost in the noise floor. Technical report, Analog Devices Inc.

    Google Scholar 

  31. Kotelnikov AV (1933) On the capacity of the ’ether’ and of cables in electrical communication. In: Proceedings of the first all-union conference on the technological reconstruction of the communications sector and low-current engineering, Moscow

    Google Scholar 

  32. LEM (2004) Isolated current and voltage transducer, 3 edn. LEM Components, Milwaukee

    Google Scholar 

  33. LEM (2012) Current transducer LA 55-P. LEM Components

    Google Scholar 

  34. LEM (2012) Current transducer LA 205-S. Technical report, LEM Components

    Google Scholar 

  35. Lyons R (2004) Understanding digital signal processing, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  36. Mota M (2010) Understanding clock jitter effects on data converter performance and how to minimize them. Technical report, Synopsis Inc.

    Google Scholar 

  37. Norsworthy SR (1997) Quantization errors and dithering in modulators. In: Norsworthy SR, Schreier R, Temes GC (eds) Delta-sigma data converters: theory, design, and simulation. IEEE Press, New York

    Google Scholar 

  38. Norsworthy SR, Schreier R, Temes GC (eds) (1997) Delta-sigma data converters, theory, design, and simulation. IEEE Press, New York

    Google Scholar 

  39. Nyquist H (1924) Certain factors affecting telegraph speed. Bell Syst Tech J 3:324–346

    Google Scholar 

  40. Nyquist H (1928) Certain topics in telegraph transmission theory. AIEE Trans 47:617–644

    Google Scholar 

  41. Oppenheim AV, Schafer RW (1999) Discrete-time signal processing. Prentice Hall, New Jersey

    Google Scholar 

  42. Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  43. Plassche R (2003) CMOS integrated analog-to-digital and digital-to-analog converters. Springer, Dordrecht

    Google Scholar 

  44. Proakis JG, Manolakis DM (1996) Digital signal processing, principles, algorithms, and application. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  45. Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  46. Ray WF, Davis RM (1993) Wide bandwidth Rogowski current transducer: part 1—the Rogowski coil. EPE J (3)2:116–122

    Google Scholar 

  47. Ray WF, Davis RM (1993) Wide bandwidth Rogowski current transducer: part 2—the integrator. EPE J (3)1:51–59

    Google Scholar 

  48. Ray WF, Davis RM (1997) Developments in Rogowski current transducer. In: EPE conference proceedings, vol 3. Trondheim, pp 308–312

    Google Scholar 

  49. Redmayne D, Trelewicz E, Smith A (2006) Understanding the effect of clock jitter on high speed ADCs. Design note 1013, Technical report, Linear Technology Inc.

    Google Scholar 

  50. Rollier S (2012) High accuracy, high technology: the perfect choice! ITB 300-S / IT 400-S / IT 700-S current transducers. Technical report, LEM Components

    Google Scholar 

  51. Schreier R Temes GC (2004) Understanding delta-sigma data converters. Wiley-IEEE Press, New York

    Google Scholar 

  52. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656

    Google Scholar 

  53. Sozanski K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)

    Google Scholar 

  54. Sozanski K, Strzelecki R, Fedyczak Z, (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings, 2001 IEEE 32nd annual power electronics specialists conference—PESC, vol 2001, pp 1245–1250

    Google Scholar 

  55. Spang H, Schulthessis P (1962) Reduction of quantizing noise by use of feedback. IRE Trans Commun Syst 10:373–380

    Article  Google Scholar 

  56. Strzelecki R, Fedyczak Z, Sozanski K, Rusinski J (2000) Active power filter EFA1. Technical report, Instytut Elektrotechniki Przemyslowej, Politechnika Zielonogorska (in Polish)

    Google Scholar 

  57. Instruments Texas (2005) ISO124 precision lowest-cost isolation amplifier. Data sheet, Texas Instruments Inc.

    Google Scholar 

  58. Instruments Texas (2006) ADS8364 250kSPS, 16-bit, 6-channel simultaneous sampling analog-to-digital converter. Data sheet, Texas Instruments Inc.

    Google Scholar 

  59. Texas Instruments (2009) ISO120, ISO121 precision low cost isolation amplifier. Technical report, ISO121.pdf, Texas Instruments Inc.

    Google Scholar 

  60. Instruments Texas (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232, digital signal controllers (DSCs). Data manual, Texas Instruments Inc.

    Google Scholar 

  61. Instruments Texas (2010) INA270, INA271 voltage output, unidirectional measurement current-shunt monitor. Data sheet, Texas Instruments Inc.

    Google Scholar 

  62. Texas Instruments (2010) C2000 teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc.

    Google Scholar 

  63. Instruments Texas (2011) ADS1274, ADS1278, quad/octal, simultaneous sampling, 24-bit analog-to-digital converters.Data sheet, Texas Instruments Inc.

    Google Scholar 

  64. Tewksbury S (1978) Oversampled, linear predictive and noise-shaping coders of order N \(>\)1. IEEE Trans Circ Syst 25(7):436–447

    Google Scholar 

  65. Vishay (2011) Linear optocoupler, high gain stability, wide bandwidth. Data sheet, Vishay Semiconductor GmbH

    Google Scholar 

  66. Zolzer U (2008) Digital audio signal processing. Wiley, Hoboken

    Google Scholar 

  67. Zolzer U (ed) (2002) DAFX—Digital audio effects. Wiley, Chichester

    Google Scholar 

  68. Zumbahlen H (ed) (2007) Basic linear design. Analog Devices Inc., Norwood

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Sozański .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Sozański, K. (2013). Analog Signals Conditioning and Discretization. In: Digital Signal Processing in Power Electronics Control Circuits. Power Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5267-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5267-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5266-8

  • Online ISBN: 978-1-4471-5267-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics