Skip to main content

The Coronary Circulation in Acute Coronary Syndromes

  • Chapter
  • First Online:
Book cover Physiological Assessment of Coronary Stenoses and the Microcirculation

Abstract

Acute coronary syndromes constitute one of the most serious presentations of ischemic heart disease, accounting for a significant proportion of patients investigated and treated in the catheterization laboratory. When assessing both coronary stenoses and the microcirculation in the context of acute coronary syndromes (ACS), it is important to bear in mind that both ST elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTE-ACS) are associated with distinct modifications in coronary physiology and that therefore the principles applied to their assessment in chronic stable angina may not hold true. In this chapter we discuss the pathophysiology of the microvasculature during ACS followed by a review of the benefits and limitations of physiological assessment of both epicardial stenosis and the microvasculature during ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90(12):1385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61(10):1041–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.

    Article  PubMed  Google Scholar 

  4. Cheruvu PK, Finn AV, Gardner C, Caplan J, Goldstein J, Stone GW, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50(10):940–9.

    Article  PubMed  Google Scholar 

  5. Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82(3):269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44.

    Article  PubMed  Google Scholar 

  7. Durante A, Camici PG. Novel insights into an “old” phenomenon: the no reflow. Int J Cardiol. 2015;187:273–80.

    Google Scholar 

  8. Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54(4):281–92.

    Article  PubMed  Google Scholar 

  9. Schwartz BG, Kloner RA. Coronary no reflow. Spec Issue Coron Blood Flow. 2012;52(4):873–82.

    CAS  Google Scholar 

  10. Okamura A, Ito H, Iwakura K, Kurotobi T, Koyama Y, Date M, et al. Clinical implications of distal embolization during coronary interventional procedures in patients with acute myocardial infarction: quantitative study with Doppler guidewire. JACC Cardiovasc Interv. 2008;1(3):268–76.

    Article  PubMed  Google Scholar 

  11. Napodano M, Peluso D, Marra MP, Frigo AC, Tarantini G, Buja P, et al. Time-dependent detrimental effects of distal embolization on myocardium and microvasculature during primary percutaneous coronary intervention. JACC Cardiovasc Interv. 2012;5(11):1170–7.

    Article  PubMed  Google Scholar 

  12. Skyschally A, Walter B, Heusch G. Coronary microembolization during early reperfusion: infarct extension, but protection by ischaemic postconditioning. Eur Heart J. 2013;34(42):3314–21.

    Article  CAS  PubMed  Google Scholar 

  13. Giampaolo Niccoli, Elena Falcioni, Nicola Cosentino, Francesco Fracassi, Marco Roberto, Alessandro Fabretti, et al. Impact of Accuracy of Fractional Flow Reserve to Reduction of Microvascular Resistance After Intracoronary Adenosine in Patients With Angina Pectoris or Non–ST-Segment Elevation Myocardial Infarction. DOI: http://dx.doi.org/10.1016/j.amjcard.2014.01.422.

    Google Scholar 

  14. Sezer M, Okcular I, Goren T, Oflaz H, Nisanci Y, Umman B, et al. Association of haematological indices with the degree of microvascular injury in patients with acute anterior wall myocardial infarction treated with primary percutaneous coronary intervention. Heart. 2007;93(3):313–8.

    Article  PubMed  Google Scholar 

  15. van der Laan AM, Hirsch A, Robbers LFHJ, Nijveldt R, Lommerse I, Delewi R, et al. A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction. Am Heart J. 2012;163(1):57–65.e2.

    Google Scholar 

  16. Pedersen CM, Barnes G, Schmidt MR, Bøtker HE, Kharbanda RK, Newby DE, et al. Ischaemia–reperfusion injury impairs tissue plasminogen activator release in man. Eur Heart J. 2012;33(15):1920–7.

    Article  CAS  PubMed  Google Scholar 

  17. Sezer M, Oflaz H, Gören T, Okçular I, Umman B, Nişanci Y, et al. Intracoronary streptokinase after primary percutaneous coronary intervention. N Engl J Med. 2007;356(18):1823–34.

    Article  CAS  PubMed  Google Scholar 

  18. Robbers LF, Eerenberg ES, Teunissen PF, Jansen MF, Hollander MR et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represents microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–53.

    Google Scholar 

  19. Carrick D, Haig C, Ahmed N, Rauhalammi S, Clerfond G, Carberry J, et al. Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2016;5(2), e002834.

    Google Scholar 

  20. Dall’Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4(3):228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mewton N, Bonnefoy E, Revel D, Ovize M, Kirkorian G, Croisille P. Presence and extent of cardiac magnetic resonance microvascular obstruction in reperfused non-ST-elevated myocardial infarction and correlation with infarct size and myocardial enzyme release. Cardiology. 2009;113(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  22. Guerra E, Hadamitzky M, Ndrepepa G, Bauer C, Ibrahim T, Ott I, et al. Microvascular obstruction in patients with non-ST-elevation myocardial infarction: a contrast-enhanced cardiac magnetic resonance study. Int J Cardiovasc Imaging. 2014;30(6):1087–95.

    Article  PubMed  Google Scholar 

  23. Van Assche LM, Bekkers SC, Senthilkumar A, Parker MA, Kim HW, Kim RJ. The prevalence of microvascular obstruction in acute myocardial infarction: importance of ST elevation, infarct size, transmurality and infarct age. J Cardiovasc Magn Reson. 2011;13(1):1–2.

    Article  Google Scholar 

  24. Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N. Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol. 2015;12(3):156–67.

    Article  PubMed  Google Scholar 

  25. Tamita K, Akasaka T, Takagi T, Yamamuro A, Yamabe K, Katayama M, et al. Effects of microvascular dysfunction on myocardial fractional flow reserve after percutaneous coronary intervention in patients with acute myocardial infarction. Catheter Cardiovasc Interv. 2002;57(4):452–9.

    Article  PubMed  Google Scholar 

  26. Lotfi A, Jeremias A, Fearon WF, Feldman MD, Mehran R, Messenger JC, et al. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography. Catheter Cardiovasc Interv. 2014;83(4):509–18.

    Article  PubMed  Google Scholar 

  27. De Bruyne B, Pijls NHJ, Bartunek J, Kulecki K, Bech J-W, De Winter H, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation. 2001;104(2):157–62.

    Article  PubMed  Google Scholar 

  28. Samady H, Lepper W, Powers ER, Wei K, Ragosta M, Bishop GG, et al. Fractional flow reserve of infarct-related arteries identifies reversible defects on noninvasive myocardial perfusion imaging early after myocardial infarction. J Am Coll Cardiol. 2006;47(11):2187–93.

    Article  PubMed  Google Scholar 

  29. Beleslin B, Ostojic M, Djordjevic-Dikic A, Vukcevic V, Stojkovic S, Nedeljkovic M, et al. The value of fractional and coronary flow reserve in predicting myocardial recovery in patients with previous myocardial infarction. Eur Heart J. 2008;29(21):2617–24.

    Article  PubMed  Google Scholar 

  30. Marques KM, Knaapen P, Boellaard R, Westerhof N, Lammertsma AA, Visser CA, et al. Hyperaemic microvascular resistance is not increased in viable myocardium after chronic myocardial infarction. Eur Heart J. 2007;28(19):2320–5.

    Article  PubMed  Google Scholar 

  31. López-Palop R, Carrillo P, Frutos A, Castillo J, Cordero A, Toro M, et al. Usefulness of the fractional flow reserve derived by intracoronary pressure wire for evaluating angiographically intermediate lesions in acute coronary syndrome. Rev Esp Cardiol Engl Ed. 2010;63(06):686–94.

    Article  Google Scholar 

  32. Toma M, Buller CE, Westerhout CM, Fu Y, O’Neill WW, Holmes DR, et al. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J. 2010;31(14):1701–7.

    Article  PubMed  Google Scholar 

  33. Yasuhiro Usui, Taishiro Chikamori, Hidefumi Yanagisawa, Takayuki Morishima, Satoshi Hida, Nobuhiro Tanaka, et al. Reliability of pressure-derived myocardial fractional flow reserve in assessing coronary artery stenosis in patients with previous myocardial infarction. DOI: http://dx.doi.org/10.1016/S0002-9149(03)00829-4.

    Google Scholar 

  34. Ragmin F, Fast Revascularisation During InStability in Coronary Artery Disease Investigators. Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. Lancet. 1999;354(9180):708–15.

    Google Scholar 

  35. Effects of tissue plasminogen activator and a comparison of early invasive and conservative strategies in unstable angina and non-Q-wave myocardial infarction. Results of the TIMI IIIB Trial. Thrombolysis in Myocardial Ischemia. Circulation. 1994;89(4):1545–56.

    Google Scholar 

  36. Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. Zamorano, Jose Luis Achenbach, Stephan Baumgartner, Helmut Bax, Jeroen J. Bueno, Héctor Dean, Veronica Deaton, Christi Erol, Çetin Fagard, Robert Ferrari, Roberto Hasdai, David Hoes, Arno W. Kirchhof, Paulus Knuuti, Juhani Kolh, Philippe Lancellotti, Patrizio Linhart, Ales Nihoyannopoulos, Petros Piepoli, Massimo F. Ponikowski, Piotr Sirnes, Per Anton Tamargo, Juan Luis Tendera, Michal Torbicki, Adam Wijns, William Windecker, Stephan, Sousa Uva, Miguel, Achenbach, Stephan Pepper, John Anyanwu, Anelechi Badimon, Lina Bauersachs, Johann Baumbach, Andreas Beygui, Farzin Bonaros, Nikolaos De Carlo, Marco Deaton, Christi Dobrev, Dobromir Dunning, Joel Eeckhout, Eric Gielen, Stephan Hasdai, David Kirchhof, Paulus Luckraz, Heyman Mahrholdt, Heiko Montalescot, Gilles Paparella, Domenico Rastan, Ardawan J. Sanmartin, Marcelo Sergeant, Paul Silber, Sigmund Tamargo, Juan ten Berg, Jurrien Thiele, Holger van Geuns, Robert-Jan Wagner, Hans-Otto Wassmann, Sven Wendler, Olaf Zamorano, Jose Luis Weidinger, Franz Ibrahimov, Firdovsi Legrand, Victor Terzić, Ibrahim Postadzhiyan, Arman Skoric, Bosko Georgiou, Georgios M. Zelizko, Michael Junker, Anders Eha, Jaan Romppanen, Hannu Bonnet, Jean-Louis Aladashvili, Alexander Hambrecht, Rainer Becker, Dávid Gudnason, Thorarinn Segev, Amit Bugiardini, Raffaele Sakhov, Orazbek Mirrakhimov, Aibek Pereira, Bruno Felice, Herbert Trovik, Thor Dudek, Dariusz Pereira, Hélder Nedeljkovic, Milan A. Hudec, Martin Cequier, Angel Erlinge, David Roffi, Marco Kedev, Sasko Addad, Faouzi Yildirir, Aylin Davies, John, editor. Eur Heart J. 2014;35(37):2541–619.

    Google Scholar 

  37. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331(4):222–7.

    Article  CAS  PubMed  Google Scholar 

  38. van de Hoef TP, Bax M, Meuwissen M, Damman P, Delewi R, de Winter RJ, et al. Impact of coronary microvascular function on long-term cardiac mortality in patients with acute ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2013;6(3):207–15.

    Article  PubMed  Google Scholar 

  39. Gregorini L, Marco J, Kozàkovà M, Palombo C, Anguissola GB, Marco I, et al. α-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation. 1999;99(4):482–90.

    Article  CAS  PubMed  Google Scholar 

  40. Van Herck PL, Carlier SG, Claeys MJ, Haine SE, Gorissen P, Miljoen H, et al. Coronary microvascular dysfunction after myocardial infarction: increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure. Heart. 2007;93(10):1231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Niccoli G, Falcioni E, Cosentino N, Fracassi F, Roberto M, Fabretti A, et al. Impact of accuracy of fractional flow reserve to reduction of microvascular resistance after intracoronary adenosine in patients with angina pectoris or non–ST-segment elevation myocardial infarction. Am J Cardiol. 2014;113(9):1461–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bax M, de Winter RJ, Koch KT, Schotborgh CE, Tijssen JGP, Piek JJ. Time course of microvascular resistance of the infarct and noninfarct coronary artery following an anterior wall acute myocardial infarction. Am J Cardiol. 2006;97(8):1131–6.

    Article  PubMed  Google Scholar 

  43. Meuwissen M. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation. 2002;106(4):441–6.

    Article  PubMed  Google Scholar 

  44. Ntalianis A, Sels J-W, Davidavicius G, Tanaka N, Muller O, Trana C, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2010;3(12):1274–81.

    Article  PubMed  Google Scholar 

  45. Wood DA, Poulter RS, Boone R, Lim I, Bogale N, Starovoytov A, et al. TCT-628 stability of non culprit vessel fractional flow reserve in patients with st-segment elevation myocardial infarction. J Am Coll Cardiol. 2013;62(18_S1):B191.

    Google Scholar 

  46. Indolfi C, Mongiardo A, Spaccarotella C, Torella D, Caiazzo G, Polimeni A, et al. The instantaneous wave-free ratio (iFR) for evaluation of non-culprit lesions in patients with acute coronary syndrome and multivessel disease. Int J Cardiol. 2015;178:46–54.

    Article  PubMed  Google Scholar 

  47. Sels J-WEM, Tonino PAL, Siebert U, Fearon WF, Van’t Veer M, De Bruyne B, et al. Fractional flow reserve in unstable angina and Non–ST-segment elevation myocardial infarction: experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv. 2011;4(11):1183–9.

    Article  PubMed  Google Scholar 

  48. Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, et al. Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J. 2015;36(2):100–11.

    Article  PubMed  Google Scholar 

  49. Van Belle E, Rioufol G, Pouillot C, Cuisset T, Bougrini K, Teiger E, et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography insights from a large French Multicenter Fractional Flow Reserve Registry. Circulation. 2014;129(2):173–85.

    Article  PubMed  Google Scholar 

  50. Limalanathan S, Eritsland J, Andersen GØ, Kløw N-E, Abdelnoor M, Hoffmann P. Myocardial salvage is reduced in primary pci-treated stemi patients with microvascular obstruction, demonstrated by early and late CMR. PLoS One. 2013;8(8):1–6.

    Google Scholar 

  51. Lombardo A, Niccoli G, Natale L, Bernardini A, Cosentino N, Bonomo L, et al. Impact of microvascular obstruction and infarct size on left ventricular remodeling in reperfused myocardial infarction: a contrast-enhanced cardiac magnetic resonance imaging study. Int J Cardiovasc Imaging. 2012;28(4):835–42.

    Article  PubMed  Google Scholar 

  52. de Waha S, Desch S, Eitel I, Fuernau G, Lurz P, Leuschner A, et al. Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol. 2012;101(6):487–95.

    Article  PubMed  Google Scholar 

  53. Ohara Y, Hiasa Y, Takahashi T, Yamaguchi K, Ogura R, Ogata T, et al. Relation between the TIMI frame count and the degree of microvascular injury after primary coronary angioplasty in patients with acute anterior myocardial infarction. Heart. 2005;91(1):64–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van’t Hof AWJ, Liem A, Suryapranata H, Hoorntje JCA, Boer M-J de, Zijlstra F, et al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction myocardial blush grade. Circulation. 1998;97(23):2302–6.

    Google Scholar 

  55. Vicente J, Mewton N, Croisille P, Staat P, Bonnefoy-Cudraz E, Ovize M, et al. Comparison of the angiographic myocardial blush grade with delayed-enhanced cardiac magnetic resonance for the assessment of microvascular obstruction in acute myocardial infarctions. Catheter Cardiovasc Interv. 2009;74(7):1000–7.

    Article  CAS  PubMed  Google Scholar 

  56. Wong DTL, Leung MCH, Richardson JD, Puri R, Bertaso AG, Williams K, et al. Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging. 2012;28(8):1971–81.

    Article  PubMed  Google Scholar 

  57. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MBM, Umans VAWM, et al. Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol. 2008;52(3):181–9.

    Article  PubMed  Google Scholar 

  58. Husser O, Bodi V, Sanchis J, Nunez J, Lopez-Lereu MP, Monmeneu JV, et al. Predictors of cardiovascular magnetic resonance-derived microvascular obstruction on patient admission in STEMI. Int J Cardiol. 2013;166(1):77–84.

    Article  PubMed  Google Scholar 

  59. Iwakura K, Ito H, Takiuchi S, Taniyama Y, Nakatsuchi Y, Negoro S, et al. Alternation in the coronary blood flow velocity pattern in patients with No reflow and reperfused acute myocardial infarction. Circulation. 1996;94(6):1269–75.

    Article  CAS  PubMed  Google Scholar 

  60. Okamura A, Ito H, Iwakura K, Kawano S, Inoue K, Yamamoto K, et al. Usefulness of a new grading system based on coronary flow velocity pattern in predicting outcome in patients with acute myocardial infarction having percutaneous coronary intervention. Am J Cardiol. 2005;96(7):927–32.

    Article  PubMed  Google Scholar 

  61. Montisci R, Chen L, Ruscazio M, Colonna P, Cadeddu C, Caiati C, et al. Non-invasive coronary flow reserve is correlated with microvascular integrity and myocardial viability after primary angioplasty in acute myocardial infarction. Heart. 2006;92(8):1113–8.

    Google Scholar 

  62. Nohtomi Y, Takeuchi M, Nagasawa K, Arimura K, Miyata K, Kuwata K, et al. Persistence of systolic coronary flow reversal predicts irreversible dysfunction after reperfused anterior myocardial infarction. Heart. 2003;89(4):382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirsch A, Nijveldt R, Haeck JDE, Beek AM, Koch KT, Henriques JPS, et al. Relation between the assessment of microvascular injury by cardiovascular magnetic resonance and coronary Doppler flow velocity measurements in patients with acute anterior wall myocardial infarction. J Am Coll Cardiol. 2008;51(23):2230–8.

    Article  PubMed  Google Scholar 

  64. Ng MKC. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113(17):2054–61.

    Article  PubMed  Google Scholar 

  65. Takahashi T, Hiasa Y, Ohara Y, Miyazaki S, Ogura R, Miyajima H, et al. Usefulness of coronary flow reserve immediately after primary coronary angioplasty for acute myocardial infarction in predicting long-term adverse cardiac events. Am J Cardiol. 2007;100(5):806–11.

    Article  PubMed  Google Scholar 

  66. Teiger E, Garot J, Aptecar E, Bosio P, Woscoboinik J, Pernes JM, et al. Coronary blood flow reserve and wall motion recovery in patients undergoing angioplasty for myocardial infarction. Eur Heart J. 1999;20(4):285–92.

    Article  CAS  PubMed  Google Scholar 

  67. Wakatsuki T, Nakamura M, Tsunoda T, Toma H, Degawa T, Oki T, et al. Coronary flow velocity immediately after primary coronary stenting as a predictor of ventricular wall motion recovery in acute myocardial infarction. J Am Coll Cardiol. 2000;35(7):1835–41.

    Article  CAS  PubMed  Google Scholar 

  68. Kawamoto T, Yoshida K, Akasaka T, Hozumi T, Takagi T, Kaji S, et al. Can coronary blood flow velocity pattern after primary percutaneous transluminal coronary angiography predict recovery of regional left ventricular function in patients with acute myocardial infarction? Circulation. 1999;100(4):339–45.

    Article  CAS  PubMed  Google Scholar 

  69. Okcular I, Sezer M, Aslanger E, Cimen A, Umman B, Nisancı Y, et al. The accuracy of deceleration time of diastolic coronary flow measured by transthoracic echocardiography in predicting long-term left ventricular infarct size and function after reperfused myocardial infarction. Eur Heart J Cardiovasc Imaging. 2010;11(10):823–8.

    Google Scholar 

  70. Kern MJ. Coronary physiology revisited practical insights from the cardiac catheterization laboratory. Circulation. 2000;101(11):1344–51.

    Article  CAS  PubMed  Google Scholar 

  71. Aarnoudse W. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation. 2004;110(15):2137–42.

    Article  PubMed  Google Scholar 

  72. McGeoch R, Watkins S, Berry C, Steedman T, Davie A, Byrne J, et al. The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2010;3(7):715–22.

    Article  PubMed  Google Scholar 

  73. Fukunaga M, Fujii K, Kawasaki D, Sawada H, Miki K, Tamaru H, et al. Thermodilution-derived coronary blood flow pattern immediately after coronary intervention as a predictor of microcirculatory damage and midterm clinical outcomes in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2014;7(2):149–55.

    Article  PubMed  Google Scholar 

  74. Fearon WF, Shah M, Ng M, Brinton T, Wilson A, Tremmel JA, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2008;51(5):560–5.

    Article  PubMed  Google Scholar 

  75. Lim H-S, Yoon M-H, Tahk S-J, Yang H-M, Choi B-J, Choi S-Y, et al. Usefulness of the index of microcirculatory resistance for invasively assessing myocardial viability immediately after primary angioplasty for anterior myocardial infarction. Eur Heart J. 2009;30(23):2854–60.

    Article  PubMed  Google Scholar 

  76. Sezer M, Aslanger EK, Cimen AO, Yormaz E, Turkmen C, Umman B, et al. Concurrent microvascular and infarct remodeling after successful reperfusion of ST-elevation acute myocardial infarction. Circ Cardiovasc Interv. 2010;3(3):208–15.

    Article  PubMed  Google Scholar 

  77. Koudstaal S, Jansen of Lorkeers SJ, van Slochteren FJ, van der Spoel TIG, van de Hoef TP, Sluijter JP, et al. Assessment of coronary microvascular resistance in the chronic infarcted pig heart. J Cell Mol Med. 2013;17(9):1128–35.

    Google Scholar 

  78. Kitabata H, Imanishi T, Kubo T, Takarada S, Kashiwagi M, Matsumoto H, et al. Coronary microvascular resistance index immediately after primary percutaneous coronary intervention as a predictor of the transmural extent of infarction in patients with ST-segment elevation anterior acute myocardial infarction. JACC Cardiovasc Imaging. 2009;2(3):263–72.

    Article  PubMed  Google Scholar 

  79. Garot P, Pascal O, Simon M, Monin JL, Teiger E, Garot J, et al. Impact of microvascular integrity and local viability on left ventricular remodelling after reperfused acute myocardial infarction. Heart. 2003;89(4):393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G, et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation. 2004;109(9):1121–6.

    Article  PubMed  Google Scholar 

  81. Teunissen PFA, de Waard GA, Hollander MR, Robbers LFHJ, Danad I, Biesbroek PS, et al. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2015;8(3), e001786.

    Article  PubMed  Google Scholar 

  82. Kitabata H, Kubo T, Ishibashi K, Komukai K, Tanimoto T, Ino Y, et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6(10):1046–54.

    Article  PubMed  Google Scholar 

  83. Reffelmann T, Kloner RA. Microvascular reperfusion injury: rapid expansion of anatomic no reflow during reperfusion in the rabbit. Am J Physiol Heart Circ Physiol. 2002;283(3):H1099–107.

    Article  CAS  PubMed  Google Scholar 

  84. Ito H, Terai K, Iwakura K, Kawase I, Fujii K. Hemodynamics of microvascular dysfunction in patients with anterior wall acute myocardial infarction. Am J Cardiol. 2004;94(2):209–12.

    Google Scholar 

  85. Shimada K, Sakanoue Y, Kobayashi Y, Ehara S, Hirose M, Nakamura Y, et al. Assessment of myocardial viability using coronary zero flow pressure after successful angioplasty in patients with acute anterior myocardial infarction. Heart. 2003;89(1):71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Usui Y, Chikamori T, Yanagisawa H, Morishima T, Hida S, Tanaka N, Takazawa K, Yamashina A. Reliability of pressure-derived myocardial fractional flow reserve in assessing coronary artery stenosis in patients with previous myocardial infarction. Am J Cardiol. 2003;92(6):699–702. doi: http://dx.doi.org/10.1016/S0002-9149(03)00829-4.

  87. Niccoli G, Falcioni E, Cosentino N, Fracassi F, Roberto M, Fabretti A, Panebianco M, Scalone G, Burzotta F, Trani C, Leone AM, Davies J, Crea F. Impact of accuracy of fractional flow reserve to reduction of microvascular resistance after intracoronary adenosine in patients with angina pectoris or non–ST-segment elevation myocardial infarction. Am J Cardiol. 2014;113(9):1461–7. doi: http://dx.doi.org/10.1016/j.amjcard.2014.01.422.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murat Sezer or Mauro Echavarria Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Sezer, M., Pinto, M.E., Ryan, N., Umman, S. (2017). The Coronary Circulation in Acute Coronary Syndromes. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics