Skip to main content

Computational Analysis of Multislice CT Angiography

  • Chapter
  • First Online:
  • 1270 Accesses

Abstract

In the last two decades, coronary computed tomography angiography (CTA) has been introduced as a noninvasive alternative for the assessment of coronary anatomy. Research in the field has made major progress, and landmark discoveries include the introduction and validation of patient-specific 3-D blood flow analysis, the development of adaptive finite-element models for simulating cardiovascular blood flow, the definition of physiologically realistic inflow and outflow boundary conditions, as well as the coupled description of blood flow and vessel wall dynamics. Computed CTA can provide an accurate coronary geometric model, including branching and pathology specific to a patient. Based upon this geometric information, a volumetric finite-element mesh with anisotropic refinement and boundary layers is generated in order to compute numerical results. Upon completion of the blood flow analysis, mean coronary pressure is extracted from the computer analysis performed under maximum hyperemic conditions. The noninvasive fractional flow reserve (FFRCT) is defined as the computed mean coronary pressure distal to a lesion divided by the computed mean blood pressure in the aorta under conditions of simulated maximum hyperemia. This technology has been clinically validated against invasive FFR in several studies with high sensitivity, specificity, and accuracy. The adjunction of functional and anatomical noninvasive evaluation of patients using a single MSCT study will ultimately provide a comprehensive “one-stop” noninvasive evaluation of the coronaries and will guide interventional and surgical revascularization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation. 2002;106(16):2051–4.

    Article  PubMed  Google Scholar 

  2. Arbab-Zadeh A, Hoe J. Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. JACC Cardiovasc Imaging. 2011;4(2):191–202.

    Article  PubMed  Google Scholar 

  3. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  CAS  PubMed  Google Scholar 

  4. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372(14):1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. investigators S-H. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–91.

    Article  Google Scholar 

  6. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87(4):1354–67.

    Article  CAS  PubMed  Google Scholar 

  7. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  8. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56(3):177–84.

    Article  PubMed  Google Scholar 

  9. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):2541–619.

    Article  PubMed  Google Scholar 

  10. Min JK, Hachamovitch R, Rozanski A, Shaw LJ, Berman DS, Gibbons R. Clinical benefits of noninvasive testing: coronary computed tomography angiography as a test case. JACC Cardiovasc Imaging. 2010;3(3):305–15.

    Article  PubMed  Google Scholar 

  11. Schoenhagen P, Hachamovitch R, Achenbach S. Coronary CT angiography and comparative effectiveness research prognostic value of atherosclerotic disease burden in appropriately indicated clinical examinations. JACC Cardiovasc Imaging. 2011;4(5):492–5.

    Article  PubMed  Google Scholar 

  12. Williams MC, Reid JH, McKillop G, Weir NW, van Beek EJ, Uren NG, et al. Cardiac and coronary CT comprehensive imaging approach in the assessment of coronary heart disease. Heart. 2011;97(15):1198–205.

    Article  CAS  PubMed  Google Scholar 

  13. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6.

    Article  CAS  PubMed  Google Scholar 

  14. Steele BN, Olufsen MS, Taylor CA. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput Methods Biomech Biomed Engin. 2007;10(1):39–51.

    Article  PubMed  Google Scholar 

  15. Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A. 1926;12(3):207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hutchins GM, Miner MM, Boitnott JK. Vessel caliber and branch-angle of human coronary artery branch-points. Circ Res. 1976;38(6):572–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol. 1980;239(1):H14–21.

    CAS  PubMed  Google Scholar 

  18. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg. 1987;5(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Kassab GS, Molloi S. On the design of the coronary arterial tree: a generalization of Murray’s law. Phys Med Biol. 1999;44(12):2929–45.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Kassab GS, Molloi S. In vivo validation of the design rules of the coronary arteries and their application in the assessment of diffuse disease. Phys Med Biol. 2002;47(6):977–93.

    PubMed  Google Scholar 

  21. Kim HJ, Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elem Anal Des. 2010;46:514–25.

    Article  Google Scholar 

  22. Müller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA. Anisotropic adaptive finite element method for modelling blood flow. Comput Methods Biomech Biomed Engin. 2005;8(5):295–305.

    Article  PubMed  Google Scholar 

  23. Sahni O, Müller J, Jansen KE, Shephard MS, Taylor CA. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Engin. 2006;195:5634–55.

    Article  Google Scholar 

  24. Sahni O, Jansen KE, Taylor CA, Shephard MS. Automated adaptive cardiovascular flow simulations. Eng Comput. 2009;25:25–36.

    Article  Google Scholar 

  25. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 2010;38(10):3195–209.

    Article  CAS  PubMed  Google Scholar 

  26. Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, et al. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng. 2009;37(11):2153–69.

    Article  CAS  PubMed  Google Scholar 

  27. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-causing Stenoses obtained via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97.

    Article  PubMed  Google Scholar 

  29. Kim KH, Doh JH, Koo BK, Min JK, Erglis A, Yang HM, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv. 2014;7(1):72–8.

    Article  PubMed  Google Scholar 

  30. Tanaka K, Bezerra HG, Gaur S, Attizzani GF, Botker HE, Costa MA, et al. Comparison between Non-invasive (coronary computed tomography angiography derived) and invasive-fractional flow reserve in patients with serial stenoses within One coronary artery: a NXT trial substudy. Ann Biomed Eng. 2016;44(2):580–9.

    Article  PubMed  Google Scholar 

  31. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72.

    Article  CAS  PubMed  Google Scholar 

  32. Kerner A, Abadi S, Abergel E, Solomonica A, Aronson D, Roguin A, et al. Direct comparison between coronary computed tomography and invasive angiography for calculation of SYNTAX score. EuroIntervention. 2013;8:1428–34.

    Article  PubMed  Google Scholar 

  33. Papadopoulou SL, Girasis C, Dharampal A, Farooq V, Onuma Y, Rossi A, et al. CT-SYNTAX score: a feasibility and reproducibility Study. JACC Cardiovasc Imaging. 2013;6(3):413–5.

    Article  PubMed  Google Scholar 

  34. Farooq V, van Klaveren D, Steyerberg EW, Meliga E, Vergouwe Y, Chieffo A, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet. 2013;381(9867):639–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Allometry

Change in proportion of various parts of an object/organism as a consequence of growth

Anisotropy

Having properties that differ according to the direction of measurement

Impedance

Frequency analogue of resistance

Lumped (model)

Zero-dimensional model

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Collet, C., Girasis, C., Taylor, C., Serruys, P.W., Onuma, Y. (2017). Computational Analysis of Multislice CT Angiography. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics