Skip to main content

Wave Intensity Patterns in Coronary Flow in Health and Disease

  • Chapter
  • First Online:
  • 1253 Accesses

Abstract

Wave intensity analysis is a unique approach to examining coronary flow. Using principles from gas dynamics it allows the quantification and separation of forces acting to cause changes in coronary pressure and flow. This allows the individual forces acting from both the aortic and myocardial ends of the coronary artery to be measured independently even when they occur simultaneously.

A repeating pattern of six waves has been consistently identified within the coronary arteries, three originating proximally and three distally. Of these, the most clinically relevant is the backward decompression wave. This wave is formed by the re-expansion of the intramyocardial vessels that occurs in early diastole with the reversal of systolic compression.

The wave intensity profile, and in particular the backward decompression wave, has been shown to be affected by a number of pathological processes including aortic stenosis, left ventricular hypertrophy, chronic desynchronous heart failure, warm-up angina, and myocardial infarction. Interestingly, the proposed mechanisms through which they cause this impact do differ but all reflect myocardial disease/dysfunction that is appreciable and quantifiable in this unique way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parker KH. An introduction to wave intensity analysis. Med Biol Eng Comput. 2009;47:175–88.

    Article  PubMed  Google Scholar 

  2. Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol –Heart Circ Physiol. 2006;290:H878–85.

    Article  CAS  PubMed  Google Scholar 

  3. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Evidence of a dominant backward-propagating "suction" wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006;113:1768–78.

    Article  PubMed  Google Scholar 

  4. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    Article  CAS  PubMed  Google Scholar 

  6. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The framingham heart study. Ann Intern Med. 1989;110:101–7.

    Article  CAS  PubMed  Google Scholar 

  7. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  8. Drazner MH, Rame JE, Marino EK, Gottdiener JS, Kitzman DW, Gardin JM, Manolio TA, Dries DL, Siscovick DS. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the cardiovascular health study. J Am Coll Cardiol. 2004;43:2207–15.

    Article  PubMed  Google Scholar 

  9. Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, Wong ND, Smith VE, Gottdiener J. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the cardiovascular health study). Am J Cardiol. 2001;87:1051–7.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartzkopff B, Frenzel H, Diekerhoff J, Betz P, Flasshove M, Schulte HD, Mundhenke M, Motz W, Strauer BE. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J. 1992;13:17–23.

    Article  PubMed  Google Scholar 

  11. Sato F, Isoyama S, Takishima T. Normalization of impaired coronary circulation in hypertrophied rat hearts. Hypertension. 1990;16:26–34.

    Article  CAS  PubMed  Google Scholar 

  12. Kingsbury M, Mahnke A, Turner M, Sheridan D. Recovery of coronary function and morphology during regression of left ventricular hypertrophy. Cardiovasc Res. 2002;55:83–96.

    Article  CAS  PubMed  Google Scholar 

  13. Wicker P, Tarazi RC, Kobayashi K. Coronary blood flow during the development and regression of left ventricular hypertrophy in renovascular hypertensive rats. Am J Cardiol. 1983;51:1744–9.

    Article  CAS  PubMed  Google Scholar 

  14. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in shr. Hypertension. 1997;29:519–24.

    Article  CAS  PubMed  Google Scholar 

  15. Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation. 1991;83:1771–9.

    Article  CAS  PubMed  Google Scholar 

  16. Xu R, Zhang Y, Zhang M, Ge ZM, Li XC, Zhang W. relationship between regression of hypertensive left ventricular hypertrophy and improvement of coronary flow reserve. Zhonghua yi xue za zhi. 2003;83:658–61.

    PubMed  Google Scholar 

  17. Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension. 1996;27:1031–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gaasch WH. Left ventricular radius to wall thickness ratio. Am J Cardiol. 1979;43:1189–94.

    Article  CAS  PubMed  Google Scholar 

  19. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gould KL, Carabello BA. Why angina in aortic stenosis with normal coronary arteriograms? Circulation. 2003;107:3121–3.

    Article  PubMed  Google Scholar 

  21. Fallen EL, Elliott WC, Gorlin RICH. Mechanisms of angina in aortic stenosis. Circulation. 1967;36:480–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kupari M, Virtanen KS, Turto H, Viitasalo M, Mänttäri M, Lindroos M, Koskela E, Leinonen H, Pohjola-Sintonen S, Heikkilä J. Exclusion of coronary artery disease by exercise thallium-201 tomography in patients with aortic valve stenosis. Am J Cardiol. 1992;70:635–40.

    Article  CAS  PubMed  Google Scholar 

  23. Scheler S, Motz W, Strauer BE. Transient myocardial ischaemia in hypertensives: Missing link with left ventricular hypertrophy. Eur Heart J. 1992;13:62–5.

    Article  PubMed  Google Scholar 

  24. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL. Decreased coronary reserve – a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med. 1982;307:1362–6.

    Article  CAS  PubMed  Google Scholar 

  25. Galiuto L, Lotrionte M, Crea F, Anselmi A, Biondi-Zoccai GGL, De Giorgio F, Baldi A, Baldi F, Possati G, Gaudino M, Vetrovec GW, Abbate A. Impaired coronary and myocardial flow in severe aortic stenosis is associated with increased apoptosis: a transthoracic doppler and myocardial contrast echocardiography study. Heart. 2006;92:208–12.

    Article  CAS  PubMed  Google Scholar 

  26. Hildick-Smith DJR, Shapiro LM. Coronary flow reserve improves after aortic valve replacement for aortic stenosis: an adenosine transthoracic echocardiography study. J Am Coll Cardiol. 2000;36:1889–96.

    Article  CAS  PubMed  Google Scholar 

  27. Vinten-Johansen J, Weiss HR. Oxygen consumption in subepicardial and subendocardial regions of the canine left ventricle. The effect of experimental acute valvular aortic stenosis. Circ Res. 1980;46:139–45.

    Article  CAS  PubMed  Google Scholar 

  28. Bache RJ, Vrobel TR, Ring WS, Emery RW, Andersen RW. Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ Res. 1981;48:76–87.

    Article  CAS  PubMed  Google Scholar 

  29. Fifer MA, Bourdillon PD, Lorell BH. Altered left ventricular diastolic properties during pacing-induced angina in patients with aortic stenosis. Circulation. 1986;74:675–83.

    Article  CAS  PubMed  Google Scholar 

  30. Sun YH, Anderson TJ, Parker KH, Tyberg JV. Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol. 2000;89:1636–44.

    CAS  PubMed  Google Scholar 

  31. Lockie TP, Rolandi MC, Guilcher A, Perera D, De Silva K, Williams R, Asrress KN, Patel K, Plein S, Chowienczyk P, Siebes M, Redwood SR, Marber MS. Synergistic adaptations to exercise in the systemic and coronary circulations that underlie the warm-up angina phenomenon. Circulation. 2012;126:2565–74.

    Article  PubMed  Google Scholar 

  32. Kyriacou A, Whinnett ZI, Sen S, Pabari PA, Wright I, Cornelussen R, Lefroy D, Davies DW, Peters NS, Kanagaratnam P, Mayet J, Hughes AD, Francis DP, Davies JE. Improvement in coronary blood flow velocity with acute biventricular pacing is predominantly due to an increase in a diastolic backward-travelling decompression (suction) wave. Circulation. 2012;126:1334–44.

    Article  PubMed  Google Scholar 

  33. Macalpin RN, Kattus AA. Adaptation to exercise in angina pectoris: the electrocardiogram during treadmill walking and coronary angiographic findings. Circulation. 1966;33:183–201.

    Article  CAS  PubMed  Google Scholar 

  34. Jaffe MD, Quinn NK. Warm-up phenomenon in angina pectoris. Lancet. 1980;2:934–6.

    Article  CAS  PubMed  Google Scholar 

  35. Maes A, Van de Werf F, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis: impact on myocardial flow, metabolism, and function at late follow-up. Circulation. 1995;92:2072–8.

    Article  CAS  PubMed  Google Scholar 

  36. Iliceto S, Galiuto L, Marchese A, Colonna P, Oliva S, Rizzon P. Functional role of microvascular integrity in patients with infarct-related artery patency after acute myocardial infarction. Eur Heart J. 1997;18(4):618–24.

    Article  CAS  PubMed  Google Scholar 

  37. Furber AP, Prunier F, Nguyen HCP, Boulet S, Delépine S, Geslin P. Coronary blood flow assessment after successful angioplasty for acute myocardial infarction predicts the risk of long-term cardiac events. Circulation. 2004;110:3527–33.

    Article  PubMed  Google Scholar 

  38. Kawamoto T, Yoshida K, Akasaka T, Hozumi T, Takagi T, Kaji S, Ueda Y. Can coronary blood flow velocity pattern after primary percutaneous transluminal coronary angiography predict recovery of regional left ventricular function in patients with acute myocardial infarction? Circulation. 1999;100:339–45.

    Article  CAS  PubMed  Google Scholar 

  39. Davies JE, Sen S, Broyd C, Hadjiloizou N, Baksi J, Francis DP, Foale RA, Parker KH, Hughes AD, Chukwuemeka A, Casula R, Malik IS, Mikhail GW, Mayet J. Arterial pulse wave dynamics after percutaneous aortic valve replacement / clinical perspective. Circulation. 2011;124:1565–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Broyd, C.J., Parker, K., Davies, J. (2017). Wave Intensity Patterns in Coronary Flow in Health and Disease. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics