Skip to main content

Measurements of Microcirculatory Resistance

  • Chapter
  • First Online:
  • 1304 Accesses

Abstract

The coronary microvasculature is an extremely dynamic system that responds to multiple physiological conditions in order to maintain adequate myocardial perfusion [1, 2]. Modulation of microcirculatory resistance plays a key role in this regulatory process. The underling pathophysiology and adaptive mechanisms of the microcirculation are fully described in other chapters in this book. In patients with ischemic heart disease (IHD), obstructive lesions in epicardial vessels are not a prerequisite for myocardial ischemia [3], which may arise from microcirculatory dysfunction (MCD). It has been shown that MCD is an independent predictor of poorer clinical outcomes in different clinical scenarios [4, 5] and, therefore, outlining its presence in such clinical situations might be important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11.

    Article  PubMed  Google Scholar 

  2. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36:3134–46;ehv100.

    Article  PubMed  Google Scholar 

  3. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    Article  CAS  PubMed  Google Scholar 

  4. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation. 2010;121(21):2317–25.

    Article  PubMed  Google Scholar 

  5. van de Hoef TP, Bax M, Meuwissen M, Damman P, Delewi R, de Winter RJ, et al. Impact of coronary microvascular function on long-term cardiac mortality in patients with acute ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2013;6(3):207–15.

    Article  PubMed  Google Scholar 

  6. Serruys PW, Di Mario C, Meneveau N, de Jaegere P, Strikwerda S, de Feyter PJ, et al. Intracoronary pressure and flow velocity with sensor-tip guidewires: a new methodologic approach for assessment of coronary hemodynamics before and after coronary interventions. Am J Cardiol. 1993;71(14):41D–53.

    Article  CAS  PubMed  Google Scholar 

  7. De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: experimental validation. Circulation. 2001;104(17):2003–6.

    Article  PubMed  Google Scholar 

  8. Kern MJ, Lerman A, Bech J-W, De Bruyne B, Eeckhout E, Fearon WF, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American heart association committee on diagnostic and interventional cardiac catheterization. Circulation. 2006;114(12):1321–41.

    Article  PubMed  Google Scholar 

  9. Kern MJ, Deligonul U, Vandormael M, Labovitz A, Gudipati CV, Gabliani G, et al. Impaired coronary vasodilator reserve in the immediate postcoronary angioplasty period: Analysis of coronary artery flow velocity indexes and regional cardiac venous efflux. J Am Coll Cardiol. 1989;13(4):860–72.

    Article  CAS  PubMed  Google Scholar 

  10. Fearon WF, Balsam LB, Farouque HMO, Robbins RC, Fitzgerald PJ, Yock PG, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107(25):3129–32.

    Article  PubMed  Google Scholar 

  11. Yong ASC, Ho M, Shah MG, Ng MKC, Fearon WF. Coronary microcirculatory resistance is independent of epicardial stenosis. Circ Cardiovasc Interv. 2012;5(1):103–8, S1–2.

    Article  PubMed  Google Scholar 

  12. Ng MKC. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113(17):2054–61.

    Article  PubMed  Google Scholar 

  13. Lee JM, Jung J-H, Hwang D, Park J, Fan Y, Na S-H, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.

    Article  PubMed  Google Scholar 

  14. Aarnoudse W. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation. 2004;110(15):2137–42.

    Article  PubMed  Google Scholar 

  15. Fearon WF, Aarnoudse W, Pijls NHJ, De Bruyne B, Balsam LB, Cooke DT, et al. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation. 2004;109(19):2269–72.

    Article  PubMed  Google Scholar 

  16. Verhoeff B-J, van de Hoef TP, Spaan JAE, Piek JJ, Siebes M. Minimal effect of collateral flow on coronary microvascular resistance in the presence of intermediate and noncritical coronary stenoses. Am J Physiol Heart Circ Physiol. 2012;303(4):H422–8.

    Article  CAS  PubMed  Google Scholar 

  17. Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, et al. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv. 2013;6(1):53–8.

    Article  PubMed  Google Scholar 

  18. Fearon WF, Shah M, Ng M, Brinton T, Wilson A, Tremmel JA, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2008;51(5):560–5.

    Article  PubMed  Google Scholar 

  19. McGeoch R, Watkins S, Berry C, Steedman T, Davie A, Byrne J, et al. The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2010;3(7):715–22.

    Article  PubMed  Google Scholar 

  20. Payne AR, Berry C, Doolin O, McEntegart M, Petrie MC, Lindsay MM, et al. Microvascular resistance predicts myocardial salvage and infarct characteristics in ST-Elevation myocardial infarction. J Am Heart Assoc. 2012;1(4):e002246. Available from: http://jaha.ahajournals.org/content/1/4/e002246.abstract.

  21. Sezer M, Aslanger EK, Cimen AO, Yormaz E, Turkmen C, Umman B, et al. Concurrent microvascular and infarct remodeling after successful reperfusion of ST-elevation acute myocardial infarction. Circ Cardiovasc Interv. 2010;3(3):208–15.

    Article  PubMed  Google Scholar 

  22. Lim H-S, Yoon M-H, Tahk S-J, Yang H-M, Choi B-J, Choi S-Y, et al. Usefulness of the index of microcirculatory resistance for invasively assessing myocardial viability immediately after primary angioplasty for anterior myocardial infarction. Eur Heart J. 2009;30(23):2854–60.

    Article  PubMed  Google Scholar 

  23. Fearon WF, Low AF, Yong AS, McGeoch R, Berry C, Shah MG, et al. Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation. 2013;127(24):2436–41.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee JM, Layland J, Jung J-H, Lee H-J, Echavarria-Pinto M, Watkins S, et al. Integrated physiologic assessment of ischemic heart disease in real-world practice using index of microcirculatory resistance and fractional flow reserve insights from the international index of microcirculatory resistance registry. Circ Cardiovasc Interv. 2015;8(11):e002857.

    Article  PubMed  Google Scholar 

  25. Nolte F, van de Hoef TP, Meuwissen M, Voskuil M, Chamuleau SAJ, Henriques JPS, et al. Increased hyperaemic coronary microvascular resistance adds to the presence of myocardial ischaemia. EuroIntervention J Eur Collab Work Group Interv Cardiol Eur Soc Cardiol. 2014;9(12):1423–31.

    Google Scholar 

  26. Kitabata H, Imanishi T, Kubo T, Takarada S, Kashiwagi M, Matsumoto H, et al. Coronary microvascular resistance index immediately after primary percutaneous coronary intervention as a predictor of the transmural extent of infarction in patients with ST-segment elevation anterior acute myocardial infarction. JACC Cardiovasc Imaging. 2009;2(3):263–72.

    Article  PubMed  Google Scholar 

  27. Teunissen PFA, de Waard GA, Hollander MR, Robbers LFHJ, Danad I, Biesbroek PS, et al. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2015;8(3):e001786.

    Article  PubMed  Google Scholar 

  28. Kitabata H, Kubo T, Ishibashi K, Komukai K, Tanimoto T, Ino Y, et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6(10):1046–54.

    Article  PubMed  Google Scholar 

  29. Yoon M-H, Tahk S-J, Yang H-M, Woo S-I, Lim H-S, Kang S-J, et al. Comparison of accuracy in the prediction of left ventricular wall motion changes between invasively assessed microvascular integrity indexes and fluorine-18 fluorodeoxyglucose positron emission tomography in patients with ST-elevation myocardial infarction. Am J Cardiol. 2008;102(2):129–34.

    Article  PubMed  Google Scholar 

  30. Mancini GB, McGillem MJ, DeBoe SF, Gallagher KP. The diastolic hyperemic flow versus pressure relation. A new index of coronary stenosis severity and flow reserve. Circulation. 1989;80(4):941–50.

    Article  CAS  PubMed  Google Scholar 

  31. Escaned J, Flores A, Garcia-Pavia P, Segovia J, Jimenez J, Aragoncillo P, et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts. Circulation. 2009;120(16):1561–8.

    Article  CAS  PubMed  Google Scholar 

  32. Di Mario C, Krams R, Gil R, Serruys PW. Slope of the instantaneous hyperemic diastolic coronary flow velocity–pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation. 1994;90(3):1215–24.

    Article  PubMed  Google Scholar 

  33. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94(8):1842–9.

    Article  PubMed  Google Scholar 

  34. Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res. 1978;43(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  35. Shimada K, Sakanoue Y, Kobayashi Y, Ehara S, Hirose M, Nakamura Y, et al. Assessment of myocardial viability using coronary zero flow pressure after successful angioplasty in patients with acute anterior myocardial infarction. Heart. 2003;89(1):71–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Herck PL, Carlier SG, Claeys MJ, Haine SE, Gorissen P, Miljoen H, et al. Coronary microvascular dysfunction after myocardial infarction: increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure. Heart. 2007;93(10):1231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel N, Petraco R, Dall’Armellina E, Kassimis G, De Maria GL, Dawkins S, et al. Zero-flow pressure measured immediately after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction provides the best invasive index for predicting the extent of myocardial infarction at 6 months: an OxAMI study (Oxford Acute Myocardial Infarction). JACC Cardiovasc Interv. 2015;8(11):1410–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Ryan, N. et al. (2017). Measurements of Microcirculatory Resistance. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics