Skip to main content

Abstract

This chapter starts by a brief review of coronary physiology in terms of pressure-flow relationships and effects of vessel distensibility on microvascular resistance to lay the foundation for interpretation of coronary stenosis hemodynamics. The fluid dynamics of stenosis pressure gradient, resistance, and its dependency on flow and stenosis dimensions is outlined in the next section. Special consideration is given to serial lesions, stenosis compliance, and diffuse coronary narrowing. The last section discusses the hemodynamic effect of coronary epicardial stenoses on coronary blood flow and the need for integration of multiple physiological parameters to arrive at a well-founded procedural decision for an individual patient suffering from ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulton WF. The dynamic factor in enlargement of coronary arterial anastomoses, and paradoxical changes in the subendocardial plexus. Br Heart J. 1964;26:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wusten B, Buss DD, Deist H, Schaper W. Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol. 1977;72(6):636–50.

    Article  CAS  PubMed  Google Scholar 

  3. Spaan JAE, Ter Wee R, Van Teeffelen JWGE, Streekstra G, Siebes M, Kolyva C, et al. Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas. Med Biol Eng Comput. 2005;43(4):431–5.

    Article  CAS  PubMed  Google Scholar 

  4. van Horssen P, van den Wijngaard JP, Brandt M, Hoefer IE, Spaan JA, Siebes M. Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number towards the subendocardium. Am J Physiol Heart Circ Physiol. 2014;306(4):H496–504.

    Article  PubMed  CAS  Google Scholar 

  5. Hanley FL, Messina LM, Grattan MT, Hoffman JIE. The effect of coronary inflow pressure on coronary vascular resistance in the isolated dog heart. Circ Res. 1984;54(6):760–72.

    Article  CAS  PubMed  Google Scholar 

  6. Kanatsuka H, Ashikawa K, Komaru T, Suzuki T, Takishima T. Diameter change and pressure-red blood cell velocity relations in coronary microvessels during long diastoles in the canine left ventricle. Circ Res. 1990;66:503–10.

    Article  CAS  PubMed  Google Scholar 

  7. Marcus M, Chilian W, Kanatsuka H, Dellsperger K, Eastham C, Lamping K. Understanding the coronary circulation through studies at the microvascular level. Circulation. 1990;82(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mosher P, Ross Jr J, McFate PA, Shaw RF. Control of coronary blood flow by an autoregulatory mechanism. Circ Res. 1964;14:250–9.

    Article  CAS  PubMed  Google Scholar 

  9. Canty Jr JM. Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res. 1988;63(4):821–36.

    Article  PubMed  Google Scholar 

  10. Duncker DJ, Koller A, Merkus D, Canty Jr JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57(5):409–22.

    Article  PubMed  Google Scholar 

  11. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol Heart Circ Physiol. 1989;256(2 Pt 2):H383–90.

    CAS  Google Scholar 

  12. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330(25):1782–8.

    Article  CAS  PubMed  Google Scholar 

  13. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med. 1982;307(22):1362–6.

    Article  CAS  PubMed  Google Scholar 

  14. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82(5):1595–606.

    Article  CAS  PubMed  Google Scholar 

  15. Windecker S, Allemann Y, Billinger M, Pohl T, Hutter D, Orsucci T, et al. Effect of endurance training on coronary artery size and function in healthy men: an invasive followup study. Am J Physiol Heart Circ Physiol. 2002;282(6):H2216–23.

    Article  CAS  PubMed  Google Scholar 

  16. Sdringola S, Johnson NP, Kirkeeide RL, Cid E, Gould KL. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. JACC Cardiovasc Imaging. 2011;4(4):402–12.

    Article  PubMed  Google Scholar 

  17. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53.

    Article  PubMed  Google Scholar 

  18. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol Heart Circ Physiol. 1986;251(4):H779–88.

    CAS  Google Scholar 

  19. Hoffman JI, Spaan JA. Pressure-flow relations in coronary circulation. Physiol Rev. 1990;70(2):331–90.

    CAS  PubMed  Google Scholar 

  20. Aldea GS, Mori H, Husseini WK, Austin RE, Hoffman JIE. Effects of increased pressure inside or outside ventricles on total and regional myocardial blood flow. Am J Physiol Heart Circ Physiol. 2000;279(6):H2927–38.

    CAS  PubMed  Google Scholar 

  21. Komaru T, Kanatsuka H, Shirato K. Coronary microcirculation: physiology and pharmacology. Pharmacol Ther. 2000;86(3):217–61.

    Article  CAS  PubMed  Google Scholar 

  22. Spaan JAE. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res. 1985;56:293–309.

    Article  CAS  PubMed  Google Scholar 

  23. Spaan JAE. Mechanical determinants of myocardial perfusion. Basic Res Cardiol. 1995;90(2):89–102.

    Article  CAS  PubMed  Google Scholar 

  24. Cornelissen AJM, Dankelman J, VanBavel E, Stassen HG, Spaan JAE. Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol. 2000;278(5):H1490–9.

    CAS  PubMed  Google Scholar 

  25. Spaan J, Siebes M, Piek J. Coronary circulation and hemodynamics. In: Sperelakis N, Kurachi Y, Terzic A, Cohen M, editors. Heart physiology and pathophysiology. 4th ed. San Diego: Academic Press; 2001. p. 19–44.

    Chapter  Google Scholar 

  26. Spaan JAE, Piek JJ, Hoffman JIE, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation. 2006;113(3):446–55.

    Article  PubMed  Google Scholar 

  27. Heusch G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol. 2010;105(1):1–5.

    Article  PubMed  Google Scholar 

  28. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall. Circ Res. 1975;36:753–60.

    Article  CAS  PubMed  Google Scholar 

  29. Verhoeff B, Siebes M, Meuwissen M, Koch KT, De Winter RJ, Kearney D, et al. Changes of coronary microvascular resistance before and after percutaneous coronary intervention. Eur Heart J. 2003;24:328.

    Article  Google Scholar 

  30. Indermuehle A, Vogel R, Meier P, Zbinden R, Seiler C. Myocardial blood volume and coronary resistance during and after coronary angioplasty. Am J Physiol Heart Circ Physiol. 2011;300(3):H1119–H24.

    Article  CAS  Google Scholar 

  31. Duncker DJ, Zhang J, Bache RJ. Coronary pressure-flow relation in left ventricular hypertrophy. Importance of changes in back pressure versus changes in minimum resistance. Circ Res. 1993;72(3):579–87.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman JIE. Problems of coronary flow reserve. Ann Biomed Eng. 2000;28:884–96.

    Article  CAS  PubMed  Google Scholar 

  33. Uhlig PN, Baer RW, Vlahakes GJ, Hanley FL, Messina LM, Hoffman JI. Arterial and venous coronary pressure-flow relations in anesthetized dogs. Evidence for a vascular waterfall in epicardial coronary veins. Circ Res. 1984;55(2):238–48.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe J, Maruyama Y, Satoh S, Keitoku M, Takishima T. Effects of the pericardium on the diastolic left coronary pressure-flow relationship in the isolated dog heart. Circulation. 1987;75(3):670–5.

    Article  CAS  PubMed  Google Scholar 

  35. Messina LM, Hanley FL, Uhlig PN, Baer RW, Grattan MT, Hoffman JIE. Effects of pressure gradients between branches of the left coronary artery on the pressure axis intercept and the shape of steady state circumflex pressure-flow relations in dogs. Circ Res. 1985;56:11–9.

    Article  CAS  PubMed  Google Scholar 

  36. Scheel KW, Mass H, Williams SE. Collateral influence on pressure-flow characteristics of coronary circulation. Am J Physiol Heart Circ Physiol. 1989;257(3 Pt 2):H717–H25.

    CAS  Google Scholar 

  37. Spaan JAE. Coronary blood flow. mechanics, distribution, and control. Dordrecht: Kluwer; 1991. p. 14–6. 166–168.

    Book  Google Scholar 

  38. Tune JD. Coronary circulation. San Rafael: Biota Publishing; 2015.

    Google Scholar 

  39. Spaan JAE, Breuls NPW, Laird JD. Diastolic-systolic flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–93.

    Article  CAS  PubMed  Google Scholar 

  40. Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol Heart Circ Physiol. 1989;257(5 Pt 2):H1471–9.

    CAS  Google Scholar 

  41. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86(4):1263–308.

    Article  CAS  PubMed  Google Scholar 

  42. Bruinsma P, Arts T, Dankelman J, Spaan JAE. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol. 1988;83(5):510–24.

    Article  CAS  PubMed  Google Scholar 

  43. Spaan JAE, Cornelissen AJM, Chan C, Dankelman J, Yin FC. Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol. 2000;278:H383–403.

    CAS  PubMed  Google Scholar 

  44. Austin Jr RE, Aldea GS, Coggins DL, Flynn AE, Hoffman JI. Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res. 1990;67(2):319–31.

    Article  PubMed  Google Scholar 

  45. Hoffman JI. Heterogeneity of myocardial blood flow. Basic Res Cardiol. 1995;90(2):103–11.

    Article  CAS  PubMed  Google Scholar 

  46. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50:151–61.

    Article  CAS  PubMed  Google Scholar 

  47. van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JPHM, Spaan JAE, et al. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol. 2012;52(4):786–93.

    Article  PubMed  CAS  Google Scholar 

  48. Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res. 1991;69(3):561–70.

    Article  CAS  PubMed  Google Scholar 

  49. Bache R, Cobb F. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res. 1977;41(5):648–53.

    Article  CAS  PubMed  Google Scholar 

  50. Flynn AE, Coggins DL, Goto M, Aldea GS, Austin RE, Doucette JW, et al. Does systolic subepicardial perfusion come from retrograde subendocardial flow? Am J Physiol Heart Circ Physiol. 1992;262(6):H1759–69.

    CAS  Google Scholar 

  51. Boudoulas H. Diastolic time: the forgotten dynamic factor. Implications for myocardial perfusion. Acta Cardiol. 1991;46(1):61–71.

    CAS  PubMed  Google Scholar 

  52. Bache RJ, Schwartz JS. Effect of perfusion pressure distal to coronary stenosis on transmural myocardial blood flow. Circulation. 1982;65:928–32.

    Article  CAS  PubMed  Google Scholar 

  53. Merkus D, Vergroesen I, Hiramatsu O, Tachibana H, Nakamoto H, Toyota E, et al. Stenosis differentially affects subendocardial and subepicardial arterioles in vivo. Am J Physiol Heart Circ Physiol. 2001;280(4):H1674–82.

    CAS  PubMed  Google Scholar 

  54. Ferro G, Duilio C, Spinelli L, Liucci GA, Mazza F, Indolfi C. Relation between diastolic perfusion time and coronary artery stenosis during stress-induced myocardial ischemia. Circulation. 1995;92(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ferro G, Spinelli L, Duilio C, Spadafora M, Guarnaccia F, Condorelli M. Diastolic perfusion time at ischemic threshold in patients with stress-induced ischemia. Circulation. 1991;84(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  56. Fokkema DS, VanTeeffelen JWGE, Dekker S, Vergroesen I, Reitsma JB, Spaan JAE. Diastolic time fraction as a determinant of subendocardial perfusion. Am J Physiol Heart Circ Physiol. 2005;288(5):H2450–6.

    Article  CAS  PubMed  Google Scholar 

  57. Merkus D, Kajiya F, Vink H, Vergroesen I, Dankelman J, Goto M, et al. Prolonged diastolic time fraction protects myocardial perfusion when coronary blood flow is reduced. Circulation. 1999;100(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  58. Roschke EJ, Back LH. The influence of upstream conditions on flow reattachment lengths downstream of an abrupt circular channel expansion. J Biomech. 1976;9(7):481–3.

    Article  CAS  PubMed  Google Scholar 

  59. Kirkeeide RL, Young DF, Cholvin NR. Wall vibrations induced by flow through simulated stenoses in models and arteries. J Biomech. 1977;10(7):431–7.

    Article  CAS  PubMed  Google Scholar 

  60. Seeley BD, Young DF. Effect of geometry on pressure losses across models of arterial stenoses. J Biomech. 1976;9:439–48.

    Article  CAS  PubMed  Google Scholar 

  61. Young DF. Fluid mechanics of arterial stenoses. J Biomech Eng. 1979;101(3):157–75.

    Article  Google Scholar 

  62. Young DF, Cholvin NR, Kirkeeide RL, Roth AC. Hemodynamics of arterial stenoses at elevated flow rates. Circ Res. 1977;41(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  63. Siebes M, Tjajahdi I, Gottwik M, Schlepper M. Influence of elliptical and eccentric area reduction on the pressure drop across stenoses. Z Kardiol. 1984;73:59.

    Google Scholar 

  64. Kirkeeide RL. Coronary obstructions, morphology and physiologic significance. In: Reiber JHC, Serruys PW, editors. Quantitative coronary arteriography. Dordrecht: Kluwer Academic Publishers; 1991. p. 229–44.

    Chapter  Google Scholar 

  65. Huo Y, Svendsen M, Choy JS, Zhang Z-D, Kassab GS. A validated predictive model of coronary fractional flow reserve. J R Soc Interface. 2012;9(71):1325–38.

    Article  PubMed  Google Scholar 

  66. Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res. 1978;43(2):242–53.

    Article  CAS  PubMed  Google Scholar 

  67. Siebes M, Verhoeff BJ, Meuwissen M, de Winter RJ, Spaan JAE, Piek JJ. Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation. 2004;109(6):756–62.

    Article  PubMed  Google Scholar 

  68. Nolte F, van de Hoef TP, de Klerk W, Baan Jr J, Lockie TP, Spaan JA, et al. Functional coronary stenosis severity assessed from the mean pressure gradient-velocity relationship obtained by contrast medium-induced submaximal hyperaemia. EuroIntervention. 2014;10(3):320–8.

    Article  PubMed  Google Scholar 

  69. Marques KMJ, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC. The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol. 2002;39(10):1630–6.

    Article  PubMed  Google Scholar 

  70. Vlodaver Z, Edwards JW. Pathology of coronary atherosclerosis. Prog Cardiovasc Dis. 1971;14:256–74.

    Article  CAS  PubMed  Google Scholar 

  71. Freudenberg H, Lichtlen PR. The normal wall segment in coronary stenoses – a postmortem study. Z Kardiol. 1981;70:863–9.

    CAS  PubMed  Google Scholar 

  72. Waller BF. The eccentric coronary atherosclerotic plaque: morphologic observations and clinical relevance. Clin Cardiol. 1989;12(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  73. Jeremias A, Huegel H, Lee DP, Hassan A, Wolf A, Yeung AC, et al. Spatial orientation of atherosclerotic plaque in non-branching coronary artery segments. Atherosclerosis. 2000;152(1):209–15.

    Article  CAS  PubMed  Google Scholar 

  74. Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Petruccelli JD, et al. Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng. 2005;33(12):1789–801.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sadat U, Teng Z, Gillard JH. Biomechanical structural stresses of atherosclerotic plaques. Expert Rev Cardiovasc Ther. 2010;8(10):1469–81.

    Article  PubMed  Google Scholar 

  76. Akyildiz AC, Speelman L, Gijsen FJ. Mechanical properties of human atherosclerotic intima tissue. J Biomech. 2014;47(4):773–83.

    Article  PubMed  Google Scholar 

  77. Ohayon J, Finet G, Le Floc'h S, Cloutier G, Gharib AM, Heroux J, et al. Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng. 2014;42(2):269–79.

    Article  PubMed  Google Scholar 

  78. Logan SE. On the fluid mechanics of human coronary artery stenosis. IEEE Trans Biomed Eng. 1975;22(4):327–34.

    Article  CAS  PubMed  Google Scholar 

  79. Walinsky P, Santamore WP, Wiener L, Brest A. Dynamic changes in the haemodynamic severity of coronary artery stenosis in a canine model. Cardiovasc Res. 1979;13:113–8.

    Article  CAS  PubMed  Google Scholar 

  80. Schwartz JS, Carlyle PF, Cohn JN. Effect of coronary arterial pressure on coronary stenosis resistance. Circulation. 1980;61:70–6.

    Article  CAS  PubMed  Google Scholar 

  81. Gould KL. Dynamic coronary stenosis. Am J Cardiol. 1980;45(2):286–92.

    Article  CAS  PubMed  Google Scholar 

  82. Santamore WP, Kent RL, Carey RA, Bove AA. Synergistic effects of pressure, distal resistance, and vasoconstriction on stenosis. Am J Physiol Heart Circ Physiol. 1982;243(2):H236–42.

    CAS  Google Scholar 

  83. Brown BG, Lee AB, Bolson EL, Dodge HT. Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation. 1984;70(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  84. Schwartz JS, Bache RJ. Effect of arteriolar dilation on coronary artery diameter distal to coronary stenoses. Am J Physiol Heart Circ Physiol. 1985;249(5 Pt 2):H981–8.

    CAS  Google Scholar 

  85. Siebes M, Campbell CS, D'Argenio DZ. Fluid dynamics of a partially collapsible stenosis in a flow model of the coronary circulation. J Biomech Eng. 1996;118(4):489–97.

    Article  CAS  PubMed  Google Scholar 

  86. Siebes M, Gottwik MG, Schlepper M. Experimental studies of the pressure drop across serial stenoses. Proceeding World Congress on Medical Physics and Biomedical Engineering. Hamburg: IFMBE; 1982. p. 2. 47.

    Google Scholar 

  87. Siebes M, Gottwik MG, Schlepper M. Hemodynamic effect of sequence and severity of serial stenoses. J Am Coll Cardiol. 1983;1(2):684.

    Google Scholar 

  88. Schwartz JS. Interaction of compliant coronary stenoses in series in a canine model. Am J Med Sci. 1985;289(5):192–9.

    Article  CAS  PubMed  Google Scholar 

  89. John B, Siebes M. Effects of stenosis compliance on flow through sequential stenoses. Adv Bioeng Am Soc Mech Eng. 1992;BED-22:383–6.

    Google Scholar 

  90. Pijls NHJ, De Bruyne B, Bech GJW, Liistro F, Heyndrickx GR, Bonnier HJRM, et al. Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation. 2000;102(19):2371–7.

    Article  CAS  PubMed  Google Scholar 

  91. Fearon WF, Yong AS, Lenders G, Toth GG, Dao C, Daniels DV, et al. The impact of downstream coronary stenosis on fractional flow reserve assessment of intermediate left main coronary artery diseasehuman validation. J Am Coll Cardiol Intv. 2015;8(3):398–403.

    Article  Google Scholar 

  92. Kim H-L, Koo B-K, Nam C-W, Doh J-H, Kim J-H, Yang H-M, et al. Clinical and physiological outcomes of fractional flow reserve-guided percutaneous coronary intervention in patients with serial stenoses within one coronary artery. JACC Cardiovasc Interv. 2012;5(10):1013–8.

    Article  PubMed  Google Scholar 

  93. Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis. 1988;31(1):39–56.

    Article  CAS  PubMed  Google Scholar 

  94. Johnson NP, Kirkeeide RL, Gould KL. Coronary anatomy to predict physiology: fundamental limits. Circ Cardiovasc Imaging. 2013;6(5):817–32.

    Article  PubMed  Google Scholar 

  95. Gould KL, Johnson NP. Physiologic severity of diffuse coronary artery disease: hidden high risk. Circulation. 2015;131(1):4–6.

    Article  PubMed  Google Scholar 

  96. Gould KL, Johnson NP, Kaul S, Kirkeeide RL, Mintz GS, Rentrop KP, et al. Patient selection for elective revascularization to reduce myocardial infarction and mortality: new lessons from randomized trials, coronary physiology, and statistics. Circ Cardiovasc Imaging. 2015;8(5):e003099.

    Article  PubMed  Google Scholar 

  97. Nakazato R, Shalev A, Doh JH, Koo BK, Gransar H, Gomez MJ, et al. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol. 2013;62(5):460–7.

    Article  PubMed  Google Scholar 

  98. Abd TT, George RT. Association of coronary plaque burden with fractional flow reserve: should we keep attempting to derive physiology from anatomy? Cardiovasc Diagn Ther. 2015;5(1):67–70.

    PubMed  PubMed Central  Google Scholar 

  99. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61(10):1041–51.

    Article  PubMed  PubMed Central  Google Scholar 

  100. De Bruyne B, Hersbach F, Pijls NHJ, Bartunek J, Bech J-W, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but "normal" coronary angiography. Circulation. 2001;104(20):2401–6.

    Article  CAS  PubMed  Google Scholar 

  101. Back LH, Cho YI, Crawford DW, Cuffel RF. Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man. J Biomech Eng. 1984;106:48–53.

    Article  CAS  PubMed  Google Scholar 

  102. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5(2):193–202.

    Article  PubMed  Google Scholar 

  103. Dodge Jr J, Brown B, Bolson E, Dodge H. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 1992;86(1):232–46.

    Article  PubMed  Google Scholar 

  104. Santamore WP, Bove AA. Why are arteries the size they are? J Appl Physiol. 2008;104(5):1259.

    Article  PubMed  Google Scholar 

  105. Seiler C, Kirkeeide RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation. 1992;85(6):1987–2003.

    Article  CAS  PubMed  Google Scholar 

  106. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation. 2000;101(16):1931–54.

    Article  CAS  PubMed  Google Scholar 

  107. Choy JS, Kassab GS. Scaling of myocardial mass to flow and morphometry of coronary arteries. J Appl Physiol. 2008;104(5):1281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Huo Y, Wischgoll T, Choy JS, Sola S, Navia JL, Teague SD, et al. CT-based diagnosis of diffuse coronary artery disease on the basis of scaling power laws. Radiology. 2013;268(3):694–701.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kassab GS, Finet G. Anatomy and function relation in the coronary tree: from bifurcations to myocardial flow and mass. EuroIntervention. 2015;11(V):V13–V7.

    Article  PubMed  Google Scholar 

  110. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64(16):1641–54.

    Article  PubMed  Google Scholar 

  111. Zhang JM, Zhong L, Su B, Wan M, Yap JS, Tham JP, et al. Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review. Int J Numer Method Biomed Eng. 2014;30(6):659–80.

    Article  PubMed  Google Scholar 

  112. Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP. “Virtual” (Computed) fractional flow reserve current challenges and limitations. JACC Cardiovasc Interv. 2015;8:1009–17.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2(8):1009–23.

    Article  PubMed  Google Scholar 

  114. Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. JACC Cardiovasc Imaging. 2012;5(4):430–40.

    Article  PubMed  Google Scholar 

  115. van de Hoef TP, Siebes M, Spaan JA, Piek JJ. Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J. 2015; 36(47):3312-9.

    Google Scholar 

  116. Gould KL, Johnson NP. Physiologic stenosis severity, binary thinking, revascularization, and “hidden reality”. Circ Cardiovasc Imaging. 2015;8(1):e002970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorena Casadonte MD or Maria Siebes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Casadonte, L., Siebes, M. (2017). Hemodynamic Effects of Epicardial Stenoses. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics