Optical Coherence Tomography

Abstract

Coronary angiography alone is often insufficient in the evaluation of coronary artery disease (CAD). In certain scenarios, more information is required before and after percutaneous coronary revascularization (PCI). Determination of degree of calcification may be important to determine if further vessel modification is required with either higher pressure non-compliant balloons and/or mechanical rotablation atherectomy. Longer stent length may be necessary if there is lipid rich plaque at the margins of the lesion being treated. Ambiguities of angiography may need to be further delineated prior to committing to PCI. After PCI, determination of stent results maybe suboptimal with angiography alone with significant limitations involving stent malapposition or underexpansion, proximal or distal dissections, and angiographic haziness due to clot or tissue prolapse. This chapter will highlight the role of OCT in coronary artery disease and intervention.

Keywords

Optical coherence tomography (OCT) Optical coherence technology OCT and image display OCT and percutaneous coronary intervention (PCI) OCT and intravascular ultrasound (IVUS) 

References

  1. 1.
    Tearney G, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standard for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J Am Coll Cardiol. 2012;12:1058–72.CrossRefGoogle Scholar
  2. 2.
    Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75:202–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J. 2012;76:922–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Bezerra HG, Costa MA, Guagliumi G, et al. Intracoronary optical coherence tomography: a comprehensive review. J Am Coll Cardiol Intv. 2009;2:1035–46.CrossRefGoogle Scholar
  5. 5.
    Tearney GJ, Waxman S, Shishkov M, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. J Am Coll Cardiol Img. 2008;1:752–61.CrossRefGoogle Scholar
  6. 6.
    Barlis P, Schmitt JM. Current and future developments in intracoronary optical coherence tomography imaging. EuroIntervention. 2009;4:529–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Prati F, Regar E, Mintz GS, et al. Expert review on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of immune acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Tanaka A, Imanishi T, Kitabata H, et al. Distribution and frequency of thin-capped fibroatheromas and ruptured plaques in the entire culprit coronary artery in patients with acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2008;102:975–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kubo T, Xu C, Wang Z, van Ditzhuijzen NS, Bezerra HG. Plaque and thrombus evaluation by optical coherence tomography. Int J Cardiovasc Imaging. 2011;27:289–98.PubMedCrossRefGoogle Scholar
  11. 11.
    Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202:491–7.PubMedCrossRefGoogle Scholar
  12. 12.
    MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44:972–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Raffel OC, Tearney GJ, Gauthier DD, Halpern EF, Bouma BE, Jang IK. Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler Thromb Vasc Biol. 2007;27:1820–7.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Tanimoto T, Imanishi T, Tanaka A, et al. Various types of plaque disruption in culprit coronary artery visualized by optical coherence tomography in a patient with unstable angina. Circ J. 2009;73:187–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Kubo T, Akasaka T, Shit J, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6(10):1095–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Gonzalo N, Serruys P, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95(23):1913–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Cook S, Eshtehardi P, Kalesan B, et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J. 2012;33(11):1334–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Chamie D, Bezerra HG, Attizzani GF, et al. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv. 2013;6(8):800–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Taniwaki M, Raber L, Baumgratner S, Pilgrim T, Moschovitis A, Wenaweser P, Meier B, Windecker S. Frequency and type of neoatherosclerosis five years after drug-eluting stent implantation: an optical coherence tomography study. J Am Coll Cardiol 2012;60(17_S)Google Scholar
  21. 21.
    Shiono Y, Kitabat H, Kubo T, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76(9):2218–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Bezerra HG, Attizzani GF, Sirbu V, Musumeci G, et al. Optical coherence tomography versus inravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. J Am Coll Cardiol Int. 2013;6:228–36.CrossRefGoogle Scholar
  23. 23.
    Barlis P, Gonzalo N, Di Mario C, Prati F, et al. A multicentre evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention. 2009;5(1):90–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Jorge E, et al. Hipertensio´n pulmonar en la estenosis mitral: un estudio de tomografı´a de coherencia o´ ptica. Rev Esp Cardiol. 2013.Google Scholar
  25. 25.
    Hill J, Mahadevaiah G, Jenkins M. Optical Coherence Tomography imaging of the patent ductus arteriosus: first known uses in congenital heart disease. Catheter Cardiovasc Interv. 2014;67(3):224 Online.Google Scholar
  26. 26.
    Sanchez-Recalde A, Moreno R, Merino JL. Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights. Eur Heart J Cardiovasc Imaging. 2014; Online.Google Scholar
  27. 27.
    Van Soest G, Regar E, Goderie TPM, Gonzaol N, et al. Pitfalls in plaque characterization by OCT. J Am Coll Cardiol Img. 2011;4:810–3.CrossRefGoogle Scholar
  28. 28.
    Kim S, Kim CS, Na JO, et al. Coronary stent fracture complicated multiple aneurysms confirmed by 3-dimensional reconstruction of intravascular-optical coherence tomography in a patient treated with open-cell designed drug-eluting stent. Circulation. 2014;129(3):e24–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineBeaumont Health, Oakland University/William Beaumont School of MedicineRoyal OakUSA
  2. 2.Department of Cardiovascular MedicineBeaumont Health SystemBirminghamUSA

Personalised recommendations