Skip to main content

Optical Coherence Tomography

  • Chapter
Book cover Interventional Cardiology Imaging

Abstract

Coronary angiography alone is often insufficient in the evaluation of coronary artery disease (CAD). In certain scenarios, more information is required before and after percutaneous coronary revascularization (PCI). Determination of degree of calcification may be important to determine if further vessel modification is required with either higher pressure non-compliant balloons and/or mechanical rotablation atherectomy. Longer stent length may be necessary if there is lipid rich plaque at the margins of the lesion being treated. Ambiguities of angiography may need to be further delineated prior to committing to PCI. After PCI, determination of stent results maybe suboptimal with angiography alone with significant limitations involving stent malapposition or underexpansion, proximal or distal dissections, and angiographic haziness due to clot or tissue prolapse. This chapter will highlight the role of OCT in coronary artery disease and intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tearney G, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standard for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J Am Coll Cardiol. 2012;12:1058–72.

    Article  Google Scholar 

  2. Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75:202–6.

    Article  PubMed  Google Scholar 

  3. Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J. 2012;76:922–7.

    Article  PubMed  Google Scholar 

  4. Bezerra HG, Costa MA, Guagliumi G, et al. Intracoronary optical coherence tomography: a comprehensive review. J Am Coll Cardiol Intv. 2009;2:1035–46.

    Article  Google Scholar 

  5. Tearney GJ, Waxman S, Shishkov M, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. J Am Coll Cardiol Img. 2008;1:752–61.

    Article  Google Scholar 

  6. Barlis P, Schmitt JM. Current and future developments in intracoronary optical coherence tomography imaging. EuroIntervention. 2009;4:529–33.

    Article  PubMed  Google Scholar 

  7. Prati F, Regar E, Mintz GS, et al. Expert review on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of immune acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.

    Article  PubMed  Google Scholar 

  8. Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka A, Imanishi T, Kitabata H, et al. Distribution and frequency of thin-capped fibroatheromas and ruptured plaques in the entire culprit coronary artery in patients with acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 2008;102:975–9.

    Article  PubMed  Google Scholar 

  10. Kubo T, Xu C, Wang Z, van Ditzhuijzen NS, Bezerra HG. Plaque and thrombus evaluation by optical coherence tomography. Int J Cardiovasc Imaging. 2011;27:289–98.

    Article  PubMed  Google Scholar 

  11. Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202:491–7.

    Article  CAS  PubMed  Google Scholar 

  12. MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44:972–9.

    Article  PubMed  Google Scholar 

  13. Raffel OC, Tearney GJ, Gauthier DD, Halpern EF, Bouma BE, Jang IK. Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler Thromb Vasc Biol. 2007;27:1820–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.

    Article  PubMed  Google Scholar 

  15. Tanimoto T, Imanishi T, Tanaka A, et al. Various types of plaque disruption in culprit coronary artery visualized by optical coherence tomography in a patient with unstable angina. Circ J. 2009;73:187–9.

    Article  PubMed  Google Scholar 

  16. Kubo T, Akasaka T, Shit J, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6(10):1095–104.

    Article  PubMed  Google Scholar 

  17. Gonzalo N, Serruys P, Okamura T, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95(23):1913–9.

    Article  CAS  PubMed  Google Scholar 

  18. Cook S, Eshtehardi P, Kalesan B, et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J. 2012;33(11):1334–43.

    Article  PubMed  Google Scholar 

  19. Chamie D, Bezerra HG, Attizzani GF, et al. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv. 2013;6(8):800–13.

    Article  PubMed  Google Scholar 

  20. Taniwaki M, Raber L, Baumgratner S, Pilgrim T, Moschovitis A, Wenaweser P, Meier B, Windecker S. Frequency and type of neoatherosclerosis five years after drug-eluting stent implantation: an optical coherence tomography study. J Am Coll Cardiol 2012;60(17_S)

    Google Scholar 

  21. Shiono Y, Kitabat H, Kubo T, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76(9):2218–25.

    Article  PubMed  Google Scholar 

  22. Bezerra HG, Attizzani GF, Sirbu V, Musumeci G, et al. Optical coherence tomography versus inravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. J Am Coll Cardiol Int. 2013;6:228–36.

    Article  Google Scholar 

  23. Barlis P, Gonzalo N, Di Mario C, Prati F, et al. A multicentre evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention. 2009;5(1):90–5.

    Article  PubMed  Google Scholar 

  24. Jorge E, et al. Hipertensio´n pulmonar en la estenosis mitral: un estudio de tomografı´a de coherencia o´ ptica. Rev Esp Cardiol. 2013.

    Google Scholar 

  25. Hill J, Mahadevaiah G, Jenkins M. Optical Coherence Tomography imaging of the patent ductus arteriosus: first known uses in congenital heart disease. Catheter Cardiovasc Interv. 2014;67(3):224 Online.

    Google Scholar 

  26. Sanchez-Recalde A, Moreno R, Merino JL. Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights. Eur Heart J Cardiovasc Imaging. 2014; Online.

    Google Scholar 

  27. Van Soest G, Regar E, Goderie TPM, Gonzaol N, et al. Pitfalls in plaque characterization by OCT. J Am Coll Cardiol Img. 2011;4:810–3.

    Article  Google Scholar 

  28. Kim S, Kim CS, Na JO, et al. Coronary stent fracture complicated multiple aneurysms confirmed by 3-dimensional reconstruction of intravascular-optical coherence tomography in a patient treated with open-cell designed drug-eluting stent. Circulation. 2014;129(3):e24–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr E. Abbas MD,FACC,FSCAI,FSVM,FASE,RPVI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Abbas, A.E., Trivax, J.E. (2015). Optical Coherence Tomography. In: Abbas, A. (eds) Interventional Cardiology Imaging. Springer, London. https://doi.org/10.1007/978-1-4471-5239-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5239-2_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5238-5

  • Online ISBN: 978-1-4471-5239-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics