Cardiac Implications of Neurological Disease

  • Cesare Iani
  • Ennio Montinaro
  • Novella Bonaffini
  • Achille Gaspardone
Chapter

Abstract

For a long time, empirical observation and popular wisdom have suggested a tight link between neurological disease and cardiac complications, yet only in recent years has the improvement of knowledge supported by new technical approaches allowed a more detailed insight in the mechanisms underlying such connection. Both acute and chronic brain diseases may have relevant impacts on heart eliciting arrhythmias as well as myocardial ischemia, which might have catastrophic consequences. In this chapter, we will illustrate the most frequent acute and chronic neurological diseases in which clinical relevant cardiac complications manifest. In the first section, the physiological basis of the complex and intriguing relationship between heart and brain under physiological conditions will be discussed. Thereafter, we will focus on cerebrovascular accidents, along with traumatic brain and spinal cord injury, epilepsy, immune-mediated polyradiculoneuropathies, and myasthenia gravis, which represent the most frequent categories for acute neurocardiac complications. In the second part of this chapter, recent additions to our knowledge on dysautonomia and myocardial denervation observed in neurological degenerative disease will be illustrated. A better understanding of the intimate connections between brain and heart is the basis for a more affective prevention of cardiac complications in patients with neurological disease and customized therapeutical interventions of neurological diseases.

Keywords

Arrhythmias Myocardial infarction Sudden death Stroke Dysautonomia Subarachnoid hemorrhage Brain trauma Epilepsy 

References

  1. 1.
    Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart. 2011;97(9):698–708.PubMedGoogle Scholar
  2. 2.
    Schwartz B. The world of thought in ancient China. Cambridge: Harvard University Press; 1985.Google Scholar
  3. 3.
    Samuels MA. ‘Voodoo’ death revisited: the modern lessons of neurocardiology. Cleve Clin J Med. 2007;74 Suppl 1:S8–16.PubMedGoogle Scholar
  4. 4.
    Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334(7):413–9.PubMedGoogle Scholar
  5. 5.
    Hua F, et al. c-Fos expression in rat brain stem and spinal cord in response to activation of cardiac ischemia-sensitive afferent neurons and electrostimulatory modulation. Am J Physiol Heart Circ Physiol. 2004;287:H2728–38.PubMedGoogle Scholar
  6. 6.
    Gray MA, Taggart P, Sutton PM, Groves D, Holdright DR, Bradbury D, Brull D, Critchley HD. A cortical potential reflecting cardiac function. Proc Natl Acad Sci U S A. 2007;104(16):6818–23.PubMedGoogle Scholar
  7. 7.
    Hagemann D, Waldstein SR, Thayer JF. Central and autonomic nervous system integration in emotion. Brain Cogn. 2003;52(1):79–87.PubMedGoogle Scholar
  8. 8.
    Natelson BH. Neurocardiology. An interdisciplinary area for the 80s. Arch Neurol. 1985;42(2):178–84. Review.PubMedGoogle Scholar
  9. 9.
    Davis AM, Natelson BH. Brain-heart interactions. The neurocardiology of arrhythmia and sudden cardiac death. Tex Heart Inst J. 1993;20(3):158–69. Review.PubMedGoogle Scholar
  10. 10.
    Benarroch E. Chapter 4. In: Robertson D, et al., editors. Primer on autonomic nervous system. 2nd ed. Philadelphia: Elsevier; 2004.Google Scholar
  11. 11.
    Toivonen L, Helenius K, Viitasalo M. Electrocardiographic repolarization during stress from awakening on alarm call. J Am Coll Cardiol. 1997;30:774–9.PubMedGoogle Scholar
  12. 12.
    Oppenheimer S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res. 2006;16:6–11.PubMedGoogle Scholar
  13. 13.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.PubMedGoogle Scholar
  14. 14.
    Critchley HD, Taggart P, Sutton PM, Holdright DR, Batchvarov V, Hnatkova K, Malik M, Dolan RJ. Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain. 2005;128(Pt 1):75–85.PubMedGoogle Scholar
  15. 15.
    Lampert R, Jain D, Burg MM, Batsford WP, McPherson CA. Destabilizing effects of mental stress on ventricular arrhythmias in patients with implantable cardioverter-defibrillators. Circulation. 2000;101(2):158–64.PubMedGoogle Scholar
  16. 16.
    Green AL, Paterson DJ. Identification of neurocircuitry controlling cardiovascular function in humans using functional neurosurgery: implications for exercise control. Exp Physiol. 2008;93(9):1022–8.PubMedGoogle Scholar
  17. 17.
    Green AL, Wang S, Owen SL, Paterson DJ, Xie K, Liu X, Bain PG, Stein JF, Aziz TZ. Functional Neurosurgery Resident Award: controlling the cardiovascular system with deep brain stimulation. Clin Neurosurg. 2006;53:316–23.PubMedGoogle Scholar
  18. 18.
    Dote K, Sato KT, et al. Myocardial stunning due to simultaneous multi vessel coronary spasms: a review of 5 cases. J Cardiol. 1991;21:203–14.PubMedGoogle Scholar
  19. 19.
    Wittstein I, Thiemann DR, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.PubMedGoogle Scholar
  20. 20.
    Sharkey S, Lesser J, et al. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation. 2005;111:472–9.PubMedGoogle Scholar
  21. 21.
    Hessel E. The brain and the heart. Anesth Analg. 2006;103(3):522–6.PubMedGoogle Scholar
  22. 22.
    Desmet W, Dynamic LV. Obstruction in apical ballooning syndrome: the chicken or the egg? Eur J Echocardiogr. 2006;7:1–3.PubMedGoogle Scholar
  23. 23.
    Merli E, Sutcliffe S, et al. TakoTako-Tsubo cardiomyopathy: new insights into the possible underlying pathophysiology. Eur J Echocardiogr. 2006;7:53.PubMedGoogle Scholar
  24. 24.
    Oppenheimer SM, Wilson JX, et al. Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res. 1991;550:115–21.PubMedGoogle Scholar
  25. 25.
    Critchley HD, Corfield DR, et al. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol. 2000;523:259–70.PubMedGoogle Scholar
  26. 26.
    Kolominsky-Rabas PL, Weber M, et al. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32:2735–40.PubMedGoogle Scholar
  27. 27.
    Rincon F, Dhamoon M, et al. Stroke location and association with fatal cardiac outcomes. Northern Manhattan Study (NOMAS). Stroke. 2008;39:2425–51.PubMedGoogle Scholar
  28. 28.
    Grau AJ, Weimar C, et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke. 2001;32(11):2559–66.PubMedGoogle Scholar
  29. 29.
    Norris JW, Froggatt GM, Hachinski VC. Cardiac arrhythmias in acute stroke. Stroke. 1978;9(4):392–6.PubMedGoogle Scholar
  30. 30.
    Cheung RTF, Hachinski W. The insula and cerebrogenic sudden death. Arch Neurol. 2000;57:1685–8.PubMedGoogle Scholar
  31. 31.
    Touzé E, Varenne O, et al. Risk of myocardial infarction and vascular death after transient ischemic attack and ischemic stroke: a systematic review and meta-analysis. Stroke. 2005;36(12):2748–55. Review.PubMedGoogle Scholar
  32. 32.
    van Bree MD, Roos YB, et al. Prevalence and characterization of ECG abnormalities after intracerebral hemorrhage. Neurocrit Care. 2010;12(1):50–5.PubMedGoogle Scholar
  33. 33.
    Hravanak M, Frangiskakis M, et al. Elevated cardiac troponin I and relationship to persistence of electrocardiographic and echocardiographic abnormalities after aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:3478–84.Google Scholar
  34. 34.
    Naidech AN, Kreiter KT, et al. Cardiac troponin elevation, cardiovascular morbidity and outcome after subarachnoid hemorrhage. Circulation. 2005;112:2851–6.PubMedGoogle Scholar
  35. 35.
    Banki N, Kopelnik A, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112:3314–9.PubMedGoogle Scholar
  36. 36.
    Zaroff JG, Pawlikoska L, et al. Adrenoceptor polymorphisms and the risk of cardiac injury and dysfunction after subarachnoid hemorrhage. Stroke. 2006;37:1680–5.PubMedGoogle Scholar
  37. 37.
    Tung PP, Olmsted E, et al. Plasma B-type natriuretic peptide levels are associated with early cardiac dysfunction after subarachnoid hemorrhage. Stroke. 2005;36:1567–71.PubMedGoogle Scholar
  38. 38.
    Lee V, Oh JK, et al. Mechanisms in neurogenic stress cardiomyopathy after aneurismal subarachnoid hemorrhage. Neurocrit Care. 2006;05:243–9.Google Scholar
  39. 39.
    Naredi S, Lambert G, et al. Increased sympathetic nervous activity in patients with non-traumatic subarachnoid hemorrhage. Stroke. 2000;31:901–6.PubMedGoogle Scholar
  40. 40.
    Manno EM, Pfeifer EA, et al. Cardiac pathology in patients with status epilepticus. Neurocrit Care. 2005;2:231.Google Scholar
  41. 41.
    Cebelin MS, Hirsch CS. Human stress cardiomyopathy. Myocardial lesions in victims of homicidal assaults without internal injuries. Hum Pathol. 1980;11:123–32.PubMedGoogle Scholar
  42. 42.
    Dimant J, Grob D. Electrocardiographic changes and myocardial damage in patients with acute cerebrovascular accidents. Stroke. 1977;8(4):448–55.PubMedGoogle Scholar
  43. 43.
    Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42(9):1727–32.PubMedGoogle Scholar
  44. 44.
    Cechetto DF, Wilson JX, Smith KE, Wolski D, Silver MD, Hachinski VC. Autonomic and myocardial changes in middle cerebral artery occlusion: stroke models in the rat. Brain Res. 1989;502(2):296–305.PubMedGoogle Scholar
  45. 45.
    Hachinski VC, Smith KE, Silver MD, Gibson CJ, Ciriello J. Acute myocardial and plasma catecholamine changes in experimental stroke. Stroke. 1986;17(3):387–90.PubMedGoogle Scholar
  46. 46.
    Nolte J. The human brain. 4th ed. St. Louis: Mosby; 1999.Google Scholar
  47. 47.
    Cereda C, Ghika J, Maeder P, Bogousslavsky J. Strokes restricted to the insular cortex. Neurology. 2002;59(12):1950–5.PubMedGoogle Scholar
  48. 48.
    Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996;22(3):229–44. Review.PubMedGoogle Scholar
  49. 49.
    Critchley HD. The human cortex responds to an interoceptive challenge. Proc Natl Acad Sci U S A. 2004;101(17):6333–4.PubMedGoogle Scholar
  50. 50.
    Türe U, Yasargil MG, Al-Mefty O, Yasargil DCH. Arteries of insula. J Neurosurg. 2000;92:676–87.PubMedGoogle Scholar
  51. 51.
    Sander D, Winbeck K, Klingelhöfer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology. 2001;57(5):833–8.PubMedGoogle Scholar
  52. 52.
    Ay H, Koroshetz WJ, et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology. 2006;66:1325–9.PubMedGoogle Scholar
  53. 53.
    Colivicchi F, Bassi A, Santini M, Caltagirone C. Prognostic implications of right-sided insular damage, cardiac autonomic derangement, and arrhythmias after acute ischemic stroke. Stroke. 2005;36(8):1710–5.PubMedGoogle Scholar
  54. 54.
    Tokgosoglu SL, Batur MK, et al. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke. 1999;30:1307–11.Google Scholar
  55. 55.
    Christensen H, Boysen G, Christensen AF, Johannesen HH. Insular lesions, ECG abnormalities, and outcome in acute stroke. J Neurol Neurosurg Psychiatry. 2005;76(2):269–71.PubMedGoogle Scholar
  56. 56.
    Laowattana S, Zeger SL, Lima JA, Goodman SN, Wittstein IS, Oppenheimer SM. Left insular stroke is associated with adverse cardiac outcome. Neurology. 2006;66(4):477–83.PubMedGoogle Scholar
  57. 57.
    Fink JN, Frampton CM, Lyden P, Lees KR, Virtual international stroke trials archive investigators. Does hemispheric lateralization influence functional and cardiovascular outcomes after stroke?: an analysis of placebo-treated patients from prospective acute stroke trials. Stroke. 2008;39(12):3335–40.PubMedGoogle Scholar
  58. 58.
    Urbinati S, Di Pasquale G, Andreoli A, Lusa AM, Ruffini M, Lanzino G, Pinelli G. Frequency and prognostic significance of silent coronary artery disease in patients with cerebral ischemia undergoing carotid endarterectomy. Am J Cardiol. 1992;69(14):1166–70.PubMedGoogle Scholar
  59. 59.
    Gongora-Rivera F, Labreuche J, Jaramillo A, Steg PG, Hauw JJ, Amarenco P. Autopsy prevalence of coronary atherosclerosis in patients with fatal stroke. Stroke. 2007;38(4):1203–10.PubMedGoogle Scholar
  60. 60.
    Lavy S, Yaar I, Melamed E, Stern S. The effect of acute stroke on cardiac functions as observed in an intensive stroke care unit. Stroke. 1974;5(6):775–80.PubMedGoogle Scholar
  61. 61.
    Goldstein D. The electrocardiogram in stroke: relationship to pathophysiological type and comparison with prior tracings. Stroke. 1979;10:253–9.PubMedGoogle Scholar
  62. 62.
    Rem JA, Hachinski VC, Boughner DR, Barnett HJ. Value of cardiac monitoring and echocardiography in TIA and stroke patients. Stroke. 1985;16(6):950–6.PubMedGoogle Scholar
  63. 63.
    Orlandi G, Fanucchi S, Strata G, Pataleo L, Landucci Pellegrini L, Prontera C, Martini A, Murri L. Transient autonomic nervous system dysfunction during hyperacute stroke. Acta Neurol Scand. 2000;102(5):317–21.PubMedGoogle Scholar
  64. 64.
    Lin HJ, Wolf PA, Benjamin EJ, Belanger AJ, D’Agostino RB. Newly diagnosed atrial fibrillation and acute stroke. The Framingham Study. Stroke. 1995;26(9):1527–30.PubMedGoogle Scholar
  65. 65.
    Hart RG. Atrial fibrillation and stroke prevention. N Engl J Med. 2003;349(11):1015–6.PubMedGoogle Scholar
  66. 66.
    Hart RG, Pearce LA, Rothbart RM, McAnulty JH, Asinger RW, Halperin JL. Stroke with intermittent atrial fibrillation: incidence and predictors during aspirin therapy. Stroke Prevention in Atrial Fibrillation Investigators. J Am Coll Cardiol. 2000;35(1):183–7.PubMedGoogle Scholar
  67. 67.
    Tayal AH, Tian M, Kelly KM, Jones SC, Wright DG, Singh D, Jarouse J, Brillman J, Murali S, Gupta R. Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology. 2008;71(21):1696–701.PubMedGoogle Scholar
  68. 68.
    Paciaroni M, Agnelli G, Caso V, Venti M, Milia P, Silvestrelli G, Parnetti L, Biagini S. Atrial fibrillation in patients with first-ever stroke: frequency, antithrombotic treatment before the event and effect on clinical outcome. J Thromb Haemost. 2005;3(6):1218–23.PubMedGoogle Scholar
  69. 69.
    Liao J, Khalid Z, Scallan C, Morillo C, O’Donnell M. Noninvasive cardiac monitoring for detecting paroxysmal atrial fibrillation or flutter after acute ischemic stroke: a systematic review. Stroke. 2007;38(11):2935–40.PubMedGoogle Scholar
  70. 70.
    Dütsch M, Burger M, Dörfler C, Schwab S, Hilz MJ. Cardiovascular autonomic function in poststroke patients. Neurology. 2007;69(24):2249–55.PubMedGoogle Scholar
  71. 71.
    Di Angelantonio E, Fiorelli M, Toni D, Sacchetti ML, Lorenzano S, Falcou A, Ciarla MV, Suppa M, Bonanni L, Bertazzoni G, Aguglia F, Argentino C. Prognostic significance of admission levels of troponin I in patients with acute ischemic stroke. J Neurol Neurosurg Psychiatry. 2005;76(1):76–81.PubMedGoogle Scholar
  72. 72.
    Lee SJ, Lee KS, Kim YI, An JY, Kim W, Kim JS. Clinical features of patients with a myocardial infarction during acute management of an ischemic stroke. Neurocrit Care. 2008;9(3):332–7.PubMedGoogle Scholar
  73. 73.
    Yoshimura S, Toyoda K, Ohara T, Nagasawa H, Ohtani N, Kuwashiro T, Naritomi H, Minematsu K. Takotsubo cardiomyopathy in acute ischemic stroke. Ann Neurol. 2008;64(5):547–54.PubMedGoogle Scholar
  74. 74.
    Prosser J, MacGregor L, Lees KR, Diener HC, Hacke W, Davis S, VISTA Investigators. Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke. 2007;38(8):2295–302.PubMedGoogle Scholar
  75. 75.
    Silver FL, Norris JW, Lewis AJ, Hachinski VC. Early mortality following stroke: a prospective review. Stroke. 1984;15(3):492–6.PubMedGoogle Scholar
  76. 76.
    Algra A, Gates PC, Fox AJ, Hachinski V, Barnett HJ, North American Symptomatic Carotid Endarterectomy Trial Group. Side of brain infarction and long-term risk of sudden death in patients with symptomatic carotid disease. Stroke. 2003;34(12):2871–5.PubMedGoogle Scholar
  77. 77.
    Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1991;325(7):445–53.Google Scholar
  78. 78.
    Kaplan RC, Tirschwell DL, Longstreth Jr WT, Manolio TA, Heckbert SR, Lefkowitz D, El-Saed A, Psaty BM. Vascular events, mortality, and preventive therapy following ischemic stroke in the elderly. Neurology. 2005;65(6):835–42.PubMedGoogle Scholar
  79. 79.
    Adams Jr HP, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF, American Heart Association, American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38(5):1655–711; Stroke. 2007; 38(9):e96.PubMedGoogle Scholar
  80. 80.
    Fang CX, Wu S, Ren J. Intracerebral hemorrhage elicits aberration in cardiomyocyte contractile function and intracellular Ca2+ transients. Stroke. 2006;37(7):1875–82.PubMedGoogle Scholar
  81. 81.
    Maramattom BV, Manno EM, Fulgham JR, Jaffe AS, Wijdicks EF. Clinical importance of cardiac troponin release and cardiac abnormalities in patients with supratentorial cerebral hemorrhages. Mayo Clin Proc. 2006;81(2):192–6.PubMedGoogle Scholar
  82. 82.
    Hays A, Diringer MN. Elevated troponin levels are associated with higher mortality following intracerebral hemorrhage. Neurology. 2006;66(9):1330–4.PubMedGoogle Scholar
  83. 83.
    Banuelos PA, Temes R, Lee VH. Neurogenic stunned myocardium associated with reversible posterior leukoencephalopathy syndrome. Neurocrit Care. 2008;9(1):108–11.PubMedGoogle Scholar
  84. 84.
    Papanikolaou J, Tsirantonaki M, Koukoulitsios G, Papageorgiou D, Mandila C, Karakitsos D, Karabinis A. Reversible posterior leukoencephalopathy syndrome and tako-tsubo cardiomyopathy: the role of echocardiographic monitoring in the ICU. Hellenic J Cardiol. 2009;50(5):436–8.PubMedGoogle Scholar
  85. 85.
    Layon J, Friedman WA, Gabrielli A, editors. Textbook of neurointensive care. Philadelphia: WB Saunders; 2003. Chapter 8.Google Scholar
  86. 86.
    Blackman JA, Patrick PD, Buck ML, Rust Jr RS. Paroxysmal autonomic instability with dystonia after brain injury. Arch Neurol. 2004;61(3):321–8. Review.PubMedGoogle Scholar
  87. 87.
    Baguley IJ, Heriseanu RE, Cameron ID, Nott MT, Slewa-Younan S. A critical review of the pathophysiology of dysautonomia following traumatic brain injury. Neurocrit Care. 2008;8(2):293–300. Review.PubMedGoogle Scholar
  88. 88.
    Singleton RH, Adelson PD. Chapter 3: Diffuse axonal injury and dysautonomia. In: Bhardwa JA, Ellegala DB, Kirsch JR, editors. Acute brain and spinal cord injury: evolving paradigms and management. New York: Informa Healthcare; 2008.Google Scholar
  89. 89.
    Boeve BF, Wijdicks EF, Benarroch EE, Schmidt KD. Paroxysmal sympathetic storms (“diencephalic seizures”) after severe diffuse axonal head injury. Mayo Clin Proc. 1998;73(2):148–52.PubMedGoogle Scholar
  90. 90.
    Kishner S, et al. Post head injury autonomic complications. 2008. http://emedicine.medscape.com/article/325994-overview#showall
  91. 91.
    Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID. Dysautonomia and heart rate variability following severe traumatic brain injury. Brain Inj. 2006;20(4):437–44 (Abstract).PubMedGoogle Scholar
  92. 92.
    Bourdages M, et al. Cardiac arrhythmias associated with severe traumatic brain injury and hypothermia therapy. Pediatr Crit Care Med. 2010;11(3):439–41.Google Scholar
  93. 93.
    Bourdages M, Bigras JL, Farrell CA, Hutchison JS, Lacroix J, Canadian Critical Care Trials Group. Cardiac arrhythmias associated with severe traumatic brain injury and hypothermia therapy. Pediatr Crit Care Med. 2010;11(3):408–14.PubMedGoogle Scholar
  94. 94.
    Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus. 2008;25(5):E13. Review.PubMedGoogle Scholar
  95. 95.
    Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25(5):E2. Review.PubMedGoogle Scholar
  96. 96.
    Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–16.PubMedGoogle Scholar
  97. 97.
    Stein DM, Menaker J, McQuillan K, Handley C, Aarabi B, Scalea TM. Risk factors for organ dysfunction and failure in patients with acute traumatic cervical spinal cord injury. Neurocrit Care. 2010;13(1):29–39.PubMedGoogle Scholar
  98. 98.
    Bunten DC, Warner AL, Brunnemann SR, Segal JL. Heart rate variability is altered following spinal cord injury. Clin Auton Res. 1998;8(6):329–34.PubMedGoogle Scholar
  99. 99.
    Furlan JC, Fehlings MG. The impact of age on mortality, impairment, and disability among adults with acute traumatic spinal cord injury. J Neurotrauma. 2009;26(10):1707–17.PubMedGoogle Scholar
  100. 100.
    Grigorean VT, Sandu AM, Popescu M, Iacobini MA, Stoian R, Neascu C, Strambu V, Popa F. Cardiac dysfunctions following spinal cord injury. J Med Life. 2009;2(2):133–45. Review.PubMedGoogle Scholar
  101. 101.
    Mathias CJ. Chapter 81: Autonomic disturbances in spinal cord injuries. In: Robertson D, editor. Primer on the autonomic nervous system. 2nd ed. Philadelphia: Elsevier; 2004.Google Scholar
  102. 102.
    Asahina M, Kuwabara S, et al. Autonomic function in demyelinating and axonal subtypes of Guillain Barrè syndrome. Acta Neurol Scand. 2002;105(1):44–50.PubMedGoogle Scholar
  103. 103.
    Dionne A, Nicolle MW, Hahn AF. Clinical and electrophysiological parameters distinguishing acute-onset chronic inflammatory demyelinating polyneuropathy from acute inflammatory demyelinating polyneuropathy. Muscle Nerve. 2010;41:202–7.PubMedGoogle Scholar
  104. 104.
    Mukerji S, Aloka F, et al. Cardiovascular complications of the Guillain-Barrè syndrome. Am J Cardiol. 2009;104:1452–5.PubMedGoogle Scholar
  105. 105.
    Pfeiffer G, Schiller H, et al. Indicators of dysautonomia in sever Guillain Barrè syndrome. J Neurol. 1999;246:1015–22.PubMedGoogle Scholar
  106. 106.
    Greenland P, Griggs RC. Arrhythmic complications in the Guillain Barrè syndrome. Arch Intern Med. 1980;40:1053–5.Google Scholar
  107. 107.
    Hodson AK, Hurwitz BJ, et al. Dysautonomia in Guillain-Barrè syndrome with dorsal root ganglioneuropathy, wallerian degeneration and fatal myocarditis. Ann Neurol. 1984;15(1):88–95.PubMedGoogle Scholar
  108. 108.
    Finkelstein JS, Melek BH. Guillain-Barrè syndrome as a cause of reversible cardiomyopathy. Tex Heart Inst J. 2006;33:57–9.PubMedGoogle Scholar
  109. 109.
    Iga K, Himura Y, et al. Reversible left ventricular dysfunction associated with Guillain Barrè syndrome-an expression of catecholamine cardiotoxicity? Jpn Circ J. 1995;59:236–40.PubMedGoogle Scholar
  110. 110.
    Gibson TC. The heart in myasthenia gravis. Am Heart J. 1975;90(3):389–96.PubMedGoogle Scholar
  111. 111.
    Hofstad H, Ohm OJ, Mork SJ, Aarli JA. Heart disease in myasthenia gravis. Acta Neurol Scand. 1984;70(3):176–84.PubMedGoogle Scholar
  112. 112.
    Suzuki S, Utsugisawa K, et al. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch Neurol. 2009;66(11):1334–8.PubMedGoogle Scholar
  113. 113.
    Beydoun SR, Wang JT, et al. Emotional stress as a trigger of myasthenic crisis and concomitant takotsubo cardiomyopathy: a case report. J Med Case Reports. 2010;4:393.Google Scholar
  114. 114.
    Bradley WG. Polymyositis: an overdiagnosed entity. Neurology. 2004;63(2):402.PubMedGoogle Scholar
  115. 115.
    Gottdiener JS, Sherber HS, et al. Cardiac manifestations in polymyositis. Am J Cardiol. 1978;41(7):1141–9.PubMedGoogle Scholar
  116. 116.
    Lundberg IE. The heart in dermatomyositis and polymyositis. Rheumatology. 2006;45:iv18–21.PubMedGoogle Scholar
  117. 117.
    Stern R, Godbold JH, et al. ECG abnormalities in polymyositis. Arch Intern Med. 1984;144:2185–9.PubMedGoogle Scholar
  118. 118.
    Haupt HM, Hutschins GM, et al. The heart and cardiac conduction system in polymyositis-dermatomyositis: a clinicopathologic study of 16 autopsied patients. Am J Cardiol. 1982;50:998–1006.PubMedGoogle Scholar
  119. 119.
    Rocamora R, Kurthen M, et al. Cardiac asystole in epilepsy: clinical and neurophysiologic features. Epilepsia. 2003;44(2):179–85.PubMedGoogle Scholar
  120. 120.
    Boggs JG. Mortality associated with status epilepticus. Epilepsy Curr. 2004;4(1):25–7.PubMedGoogle Scholar
  121. 121.
    Nevander G, Ingvar M, et al. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol. 1985;18:281–90.PubMedGoogle Scholar
  122. 122.
    De Lorenzo RJ, Towne AR, et al. Status epilepticus in children, adults and the elderly. Epilepsia. 1992;33 suppl 4:S15–25.Google Scholar
  123. 123.
    Towne AR, Pellock JM, et al. Determinants of mortality in status epilepticus. Epilepsia. 1994;35:27–34.PubMedGoogle Scholar
  124. 124.
    Boggs JG, Maramarou A, et al. Hemodynamic monitoring prior to and at the time of death in status epilepticus. Epilepsy Res. 1998;31(3):199–209.PubMedGoogle Scholar
  125. 125.
    Metcalf C, Poelzing S, et al. Status epilepticus induces cardiac myofilament damage and increased susceptibility to arrhythmias in rats. Am J Physiol Heart Circ Physiol. 2009;297:H2120–7.PubMedGoogle Scholar
  126. 126.
    Lemke DM, Hussain SI, et al. Tako-tsubo cardiomyopathy associated with seizures. Neurocrit Care. 2008;9:112–7.PubMedGoogle Scholar
  127. 127.
    Legriel S, Bruneel F, et al. Recurrent takotsubo cardiomyopathy triggered by convulsive status epilepticus. Neurocrit Care. 2008;9:118–21.PubMedGoogle Scholar
  128. 128.
    Shimutzu M, Kagawa A, et al. Neurogenic stunned myocardium associated with status epilepticus and postictal catecholamine surge. Intern Med. 2007;47:269–73.Google Scholar
  129. 129.
    Nashef L. Sudden unexpected death in epilepsy: terminology and definitions. Epilepsia. 1997;38(suppl11):S6–8.PubMedGoogle Scholar
  130. 130.
    Tomson T, Walczak T, et al. Sudden unexpected death in epilepsy: a review of incidence and risk factors. Epilepsia. 2005;46 suppl 11:54–61.PubMedGoogle Scholar
  131. 131.
    Jehi L, Najm IM. Sudden unexpected death in epilepsy: impact, mechanisms and prevention. Cleve Clin J Med. 2008;75 suppl 2:s66–70.PubMedGoogle Scholar
  132. 132.
    Goldstein DS. Cardiac denervation in patients with Parkinson disease. Cleve Clin J Med. 2007;74 Suppl 1:S91–4.PubMedGoogle Scholar
  133. 133.
    Walter BL. Cardiovascular autonomic dysfunction in patients with movement disorders. Cleve Clin J Med. 2008;75 Suppl 2:S54–8.PubMedGoogle Scholar
  134. 134.
    Goldstein DS. Neuroscience and heart-brain medicine: the year in review. Cleve Clin J Med. 2010;77 Suppl 3:S34–9.PubMedGoogle Scholar
  135. 135.
    Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, Takohashi H. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain. 2008;131(Pt3):642–50.PubMedGoogle Scholar
  136. 136.
    Goldstein D. Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol. 2003;2:669–76.PubMedGoogle Scholar
  137. 137.
    Post S, Papetropulos KK. Chapter 5C. In: Halliday G, Barker R, Rowe D, editors. Non dopamine lesions in Parkinson Diseases. Cambridge: Oxford Press; 2010.Google Scholar
  138. 138.
    Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67(2):189–94.PubMedGoogle Scholar
  139. 139.
    Yoshita M, Taki J, Yamada M. A clinical role for [(123)I]MIBG myocardial scintigraphy in the distinction between dementia of the Alzheimer’s-type and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2001;71(5):583–8.PubMedGoogle Scholar
  140. 140.
    Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76(2):249–51.PubMedGoogle Scholar
  141. 141.
    Marquié Sayagués M, Da Silva Alves L, Molina-Porcel L, Alcolea Rodríguez D, Sala Matavera I, Sánchez-Saudinós MB, Camacho Martí V, Estorch Cabrera M, Blesa González R, Blesa González R, Gómez-Isla T, Gómez-Isla T, Lleó Bisa A, Lleó Bisa A. (123)I-MIBG myocardial scintigraphy in the diagnosis of Lewy body dementia. Neurologia. 2010;25(7):414.PubMedGoogle Scholar
  142. 142.
    Camacho V, Marquié M, Lleó A, Alvés L, Artigas C, Flotats A, Duch J, Blesa R, Gómez-Isla T, Carrió I, Estorch M. Cardiac sympathetic impairment parallels nigrostriatal degeneration in probable dementia with Lewy bodies. Q J Nucl Med Mol Imaging. 2011;55(4):476–83.PubMedGoogle Scholar
  143. 143.
    Valappil RA, Black JE, Broderick MJ, Carrillo O, Frenette E, Sullivan SS, Goldman SM, Tanner CM, Langston JW. Exploring the electrocardiogram as a potential tool to screen for premotor Parkinson’s disease. Mov Disord. 2010;25(14):2296–303.PubMedGoogle Scholar
  144. 144.
    Goldstein DS, Eldadah BA, Holmes C, Pechnik S, Moak J, Saleem A, Sharabi Y. Neurocirculatory abnormalities in Parkinson disease with orthostatic hypotension: independence from levodopa treatment. Hypertension. 2005;46(6):1333–9.PubMedGoogle Scholar
  145. 145.
    Iranzo A, Molinuevo JL, Santamaría J, Serradell M, Martí MJ, Valldeoriola F, Tolosa E. Rapid-eye-movement sleep behavior disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 2006;5(7):572–7.PubMedGoogle Scholar
  146. 146.
    Wenning GK, Colosimo C, Geser F, Poewe W. Multiple system atrophy. Lancet Neurol. 2004;3(2):93–103. Erratum in: Lancet Neurol. 2004;3(3):137.PubMedGoogle Scholar
  147. 147.
    Royall DR. Insular Alzheimer disease pathology and the psychometric correlates of mortality. Cleve Clin J Med. 2008;75 suppl 2:S97–9.PubMedGoogle Scholar
  148. 148.
    Nakajima K, Yoshita M, et al. Ionidne-123-MIBG sympathetic imaging in Lewy-body diseases and related movement disorders. Q J Nucl Med Mol Imaging. 2008;52:378–87.PubMedGoogle Scholar
  149. 149.
    Sasaki K, Sakata K, et al. Sequential changes in cardiac structure and function in patients with Duchenne-type muscular dystrophy: a two-dimensional echocardiographic study. Am Heart J. 1998;135:937–44.PubMedGoogle Scholar
  150. 150.
    Mavrogeni S, Tzelepis G, et al. Cardiac and sternocleidomastoid muscle involvement in Duchenne muscular dystrophy an MRI study. Chest. 2005;127:143–8.PubMedGoogle Scholar
  151. 151.
    Grubb BP. Clinical practice. Neurocardiogenic syncope. N Engl J Med. 2005;352(10):1004–10.PubMedGoogle Scholar
  152. 152.
    Freeman R. Clinical practice. Neurogenic orthostatic hypotension. N Engl J Med. 2008;358(6):615–24.PubMedGoogle Scholar
  153. 153.
    Critchley HD, Mathias CJ, Oliver J, et al. Human cingulated cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126:213–2152.Google Scholar
  154. 154.
    Lim ECH, Lim S-H, Wilder-smith E. Brain seizes, heart ceases: a case of ictal asystole. J Neurol Neurosurg Psychiatry. 2000;69:557–9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Cesare Iani
    • 1
  • Ennio Montinaro
    • 1
  • Novella Bonaffini
    • 2
  • Achille Gaspardone
    • 3
  1. 1.Department of Neurology and Stroke UnitOspedale S. Eugenio-ASL RMCRomeItaly
  2. 2.Department of Neurology and Stroke UnitOspedale S. Eugenio-ASL RMCRomeItaly
  3. 3.Division of Cardiology, Department of MedicineOspedale S. Eugenio-ASL RMCRomeItaly

Personalised recommendations