The Endpoint on Measuring the Clinical Effects of Renal Denervation: What Are the Best Surrogates

  • Paul A. Sobotka
  • David G. Harrison
  • Marat Fudim


In the past several years, renal denervation has proven to be an effective treatment for resistant hypertension (HTN). Unfortunately the procedure does not always lower blood pressure and many patients continue to need drugs for HTN. While there are several potential explanations for this persistent elevation of blood pressure after renal denervation, one is that the renal nerves were not completely ablated. Another is that the HTN was not caused by increased sympathetic nerve activity (SNA) in the individual patient, and that other stimuli for HTN persists after renal denervation. In addition, accumulating evidence suggests that renal denervation also benefits other conditions including heart failure (HF), atrial fibrillation and insulin resistance. Thus in the near future this procedure might be frequently employed for several common medical problems. A major problem is that it will not be sufficient to simply measure blood pressure to ascertain successful renal denervation. Given these considerations, it is apparent that we need surrogate measures of increased sympathetic activity and procedural success. In this chapter we will discuss direct and indirect methods for assessing SNA in humans, how these can be used to screen patients for renal denervation, how they could be used to gauge technical success and how these various methods might be used in specific diseases.


Heart Rate Variability Arterial Stiffness Sympathetic Nerve Activity Ambulatory Blood Pressure Monitoring Surrogate Outcome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Johns EJ, Kopp UC, Dibona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67.PubMedGoogle Scholar
  2. 2.
    Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25:628–33.PubMedGoogle Scholar
  3. 3.
    Campese VM. Neurogenic factors and hypertension in renal disease. Kidney Int Suppl. 2000;75:S2–6.PubMedGoogle Scholar
  4. 4.
    Kopp UC. Neural control of renal function. San Rafael: Morgan & Claypool Life Sciences; 2011.Google Scholar
  5. 5.
    Pernow J, Schwieler J, Kahan T, Hjemdahl P, Oberle J, Wallin BG, Lundberg JM. Influence of sympathetic discharge pattern on norepinephrine and neuropeptide y release. Am J Physiol. 1989;257:H866–72.PubMedGoogle Scholar
  6. 6.
    Schwartz DD, Malik KU. Renal periarterial nerve stimulation-induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat. J Pharmacol Exp Ther. 1989;250:764–71.PubMedGoogle Scholar
  7. 7.
    Williams NG, Zhong H, Minneman KP. Differential coupling of alpha1-, alpha2-, and beta-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected pc12 cells. J Biol Chem. 1998;273:24624–32.PubMedGoogle Scholar
  8. 8.
    Azroyan A, Morla L, Crambert G, Laghmani K, Ramakrishnan S, Edwards A, Doucet A. Regulation of pendrin by camp: possible involvement in beta-adrenergic-dependent nacl retention. Am J Physiol Renal Physiol. 2012;302:F1180–7.PubMedGoogle Scholar
  9. 9.
    Pernow J, Lundberg JM. Modulation of noradrenaline and neuropeptide y (npy) release in the pig kidney in vivo: involvement of alpha 2, npy and angiotensin ii receptors. Naunyn Schmiedebergs Arch Pharmacol. 1989;340:379–85.PubMedGoogle Scholar
  10. 10.
    Unwin RJ, Bailey MA, Burnstock G. Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci Int J Physiol Produced Jointly Int Union Physiol Sci Am Physiol Soc. 2003;18:237–41.Google Scholar
  11. 11.
    Barajas L, Powers K, Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984;247:F50–60.PubMedGoogle Scholar
  12. 12.
    Barajas L, Powers K. Innervation of the renal proximal convoluted tubule of the rat. Am J Anat. 1989;186:378–88.PubMedGoogle Scholar
  13. 13.
    Barajas L, Powers K. Monoaminergic innervation of the rat kidney: a quantitative study. Am J Physiol. 1990;259:F503–11.PubMedGoogle Scholar
  14. 14.
    Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.PubMedGoogle Scholar
  15. 15.
    Osborn JL, DiBona GF, Thames MD. Beta-1 receptor mediation of renin secretion elicited by low-frequency renal nerve stimulation. J Pharmacol Exp Ther. 1981;216:265–9.PubMedGoogle Scholar
  16. 16.
    Holmer S, Rinne B, Eckardt KU, Le Hir M, Schricker K, Kaissling B, Riegger G, Kurtz A. Role of renal nerves for the expression of renin in adult rat kidney. Am J Physiol. 1994;266:F738–45.PubMedGoogle Scholar
  17. 17.
    Barrett CJ, Navakatikyan MA, Malpas SC. Long-term control of renal blood flow: what is the role of the renal nerves? Am J Physiol Regul Integr Comp Physiol. 2001;280:R1534–45.PubMedGoogle Scholar
  18. 18.
    Abdala AP, McBryde FD, Marina N, Hendy EB, Engelman Z, Fudim M, Sobotka PA, Gourine A, Paton J. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol. 2012;590(Pt 17):4269–77.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Paton JF, Sobotka PA, Fudim M, Engleman ZJ, Hart EC, McBryde FD, Abdala AP, Marina N, Gourine AV, Lobo M, Patel N, Burchell A, Ratcliffe L, Nightingale A. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension. 2013;61(1):5–13.PubMedGoogle Scholar
  20. 20.
    Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, Anderson W, Lambert G. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.PubMedGoogle Scholar
  21. 21.
    Lundin S, Ricksten SE, Thoren P. Interaction between “mental stress” and baroreceptor reflexes concerning effects on heart rate, mean arterial pressure and renal sympathetic activity in conscious spontaneously hypertensive rats. Acta Physiol Scand. 1984;120:273–81.PubMedGoogle Scholar
  22. 22.
    Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.PubMedGoogle Scholar
  23. 23.
    Ramchandra R, Hood SG, Denton DA, Woods RL, McKinley MJ, McAllen RM, May CN. Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci U S A. 2009;106:924–8.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Solano-Flores LP, Rosas-Arellano MP, Ciriello J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res. 1997;753:102–19.PubMedGoogle Scholar
  25. 25.
    Ciriello J, de Oliveira CV. Renal afferents and hypertension. Curr Hypertens Rep. 2002;4:136–42.PubMedGoogle Scholar
  26. 26.
    Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.PubMedGoogle Scholar
  27. 27.
    Smits JF, Brody MJ. Activation of afferent renal nerves by intrarenal bradykinin in conscious rats. Am J Physiol. 1984;247:R1003–8.PubMedGoogle Scholar
  28. 28.
    Katholi RE, Whitlow PL, Hageman GR, Woods WT. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens. 1984;2:349–59.PubMedGoogle Scholar
  29. 29.
    Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.PubMedGoogle Scholar
  30. 30.
    Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.PubMedGoogle Scholar
  31. 31.
    Kopp UC, Cicha MZ, Smith LA. Endogenous angiotensin modulates pge(2)-mediated release of substance p from renal mechanosensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2002;282:R19–30.PubMedGoogle Scholar
  32. 32.
    Siddiqi L, Joles JA, Grassi G, Blankestijn PJ. Is kidney ischemia the central mechanism in parallel activation of the renin and sympathetic system? J Hypertens. 2009;27:1341–9.PubMedGoogle Scholar
  33. 33.
    Gontijo JA, Kopp UC. Activation of renal pelvic chemoreceptors in rats: role of calcitonin gene-related peptide receptors. Acta Physiol Scand. 1999;166:159–65.PubMedGoogle Scholar
  34. 34.
    Kopp UC, Cicha MZ, Farley DM, Smith LA, Dixon BS. Renal substance p-containing neurons and substance p receptors impaired in hypertension. Hypertension. 1998;31:815–22.PubMedGoogle Scholar
  35. 35.
    Zhu Y, Xie C, Wang DH. Trpv1-mediated diuresis and natriuresis induced by hypertonic saline perfusion of the renal pelvis. Am J Nephrol. 2007;27:530–7.PubMedGoogle Scholar
  36. 36.
    Ditting T, Freisinger W, Siegel K, Fiedler C, Small L, Neuhuber W, Heinlein S, Reeh PW, Schmieder RE, Veelken R. Tonic postganglionic sympathetic inhibition induced by afferent renal nerves? Hypertension. 2012;59:467–76.PubMedGoogle Scholar
  37. 37.
    Feng NH, Lee HH, Shiang JC, Ma MC. Transient receptor potential vanilloid type 1 channels act as mechanoreceptors and cause substance p release and sensory activation in rat kidneys. Am J Physiol Renal Physiol. 2008;294:F316–25.PubMedGoogle Scholar
  38. 38.
    Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4:669–75.PubMedGoogle Scholar
  39. 39.
    Bencsath P, Szenasi G, Takacs L. Water and electrolyte transport in henle’s loop and distal tubule after renal sympathectomy in the rat. Am J Physiol. 1985;249:F308–14.PubMedGoogle Scholar
  40. 40.
    Bachmann S, Bosse HM, Mundel P. Topography of nitric oxide synthesis by localizing constitutive no synthases in mammalian kidney. Am J Physiol. 1995;268:F885–98.PubMedGoogle Scholar
  41. 41.
    Kopp UC, Cicha MZ, Smith LA. Impaired responsiveness of renal mechanosensory nerves in heart failure: role of endogenous angiotensin. Am J Physiol Regul Integr Comp Physiol. 2003;284:R116–24.PubMedGoogle Scholar
  42. 42.
    Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol. 1980;238:R353–8.PubMedGoogle Scholar
  43. 43.
    Couch NP, Mc BR, Dammin GJ, Murray JE. Observations on the nature of the enlargement, the regeneration of the nerves, and the function of the canine renal autograft. Br J Exp Pathol. 1961;42:106–13.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Gazdar AF, Dammin GJ. Neural degeneration and regeneration in human renal transplants. N Engl J Med. 1970;283:222–4.PubMedGoogle Scholar
  45. 45.
    Hansen JM, Abildgaard U, Fogh-Andersen N, Kanstrup IL, Bratholm P, Plum I, Strandgaard S. The transplanted human kidney does not achieve functional reinnervation. Clin Sci (Lond). 1994;87:13–20.Google Scholar
  46. 46.
    Mulder J, Hokfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R675–82.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Friberg P, Meredith I, Jennings G, Lambert G, Fazio V, Esler M. Evidence for increased renal norepinephrine overflow during sodium restriction in humans. Hypertension. 1990;16:121–30.PubMedGoogle Scholar
  48. 48.
    Dunlap ME, Sobotka PA. Fluid re-distribution rather than accumulation causes most cases of decompensated heart failure. J Am Coll Cardiol. 2013;62:165–6.PubMedGoogle Scholar
  49. 49.
    Ma MC, Huang HS, Chen CF. Impaired renal sensory responses after unilateral ureteral obstruction in the rat. J Am Soc Nephrol: JASN. 2002;13:1008–16.PubMedGoogle Scholar
  50. 50.
    Pan HL, Longhurst JC, Eisenach JC, Chen SR. Role of protons in activation of cardiac sympathetic c-fibre afferents during ischaemia in cats. J Physiol. 1999;518(Pt 3):857–66.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Kostreva DR, Zuperku EJ, Hess GL, Coon RL, Kampine JP. Pulmonary afferent activity recorded from sympathetic nerves. J Appl Physiol. 1975;39:37–40.PubMedGoogle Scholar
  52. 52.
    Kostreva DR, Castaner A, Kampine JP. Reflex effects of hepatic baroreceptors on renal and cardiac sympathetic nerve activity. Am J Physiol. 1980;238:R390–4.PubMedGoogle Scholar
  53. 53.
    Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423–9.PubMedGoogle Scholar
  54. 54.
    Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57.PubMedGoogle Scholar
  55. 55.
    Iriki M, Simon E. Differential control of efferent sympathetic activity revisited. J Physiol Sci J Physiol Sci. 2012;62:275–98.Google Scholar
  56. 56.
    Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol. 1984;247:E21–8.PubMedGoogle Scholar
  57. 57.
    Esler M, Jennings G, Korner P, Blombery P, Burke F, Willett I, Leonard P. Total, and organ-specific, noradrenaline plasma kinetics in essential hypertension. Clin Exp Hypertens A Theory Pract. 1984;6:507–21.Google Scholar
  58. 58.
    Esler M, Willett I, Leonard P, Hasking G, Johns J, Little P, Jennings G. Plasma noradrenaline kinetics in humans. J Auton Nerv Syst. 1984;11:125–44.PubMedGoogle Scholar
  59. 59.
    Bradley T, Hjemdahl P. Further studies on renal nerve stimulation induced release of noradrenaline and dopamine from the canine kidney in situ. Acta Physiol Scand. 1984;122:369–79.PubMedGoogle Scholar
  60. 60.
    Hagbarth KE, Vallbo AB. Pulse and respiratory grouping of sympathetic impulses in human muscle-nerves. Acta Physiol Scand. 1968;74:96–108.PubMedGoogle Scholar
  61. 61.
    Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG. Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol. 2005;568:315–21.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007;36:595–614.PubMedGoogle Scholar
  63. 63.
    Fagius J, Wallin BG. Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clin Auton Res. 1993;3:201–5.PubMedGoogle Scholar
  64. 64.
    Macefield VG, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol. 1994;481(Pt 3):799–809.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.PubMedGoogle Scholar
  66. 66.
    Lambert E, Dawood T, Schlaich M, Straznicky N, Esler M, Lambert G. Single-unit sympathetic discharge pattern in pathological conditions associated with elevated cardiovascular risk. Clin Exp Pharmacol Physiol. 2008;35:503–7.PubMedGoogle Scholar
  67. 67.
    Macefield VG, Wallin BG. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurones to human skin. J Physiol. 1999;516(Pt 1):303–14.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Murai H, Takata S, Maruyama M, Nakano M, Kobayashi D, Otowa K, Takamura M, Yuasa T, Sakagami S, Kaneko S. The activity of a single muscle sympathetic vasoconstrictor nerve unit is affected by physiological stress in humans. Am J Physiol Heart Circ Physiol. 2006;290:H853–60.PubMedGoogle Scholar
  69. 69.
    Macefield VG, Rundqvist B, Sverrisdottir YB, Wallin BG, Elam M. Firing properties of single muscle vasoconstrictor neurons in the sympathoexcitation associated with congestive heart failure. Circulation. 1999;100:1708–13.PubMedGoogle Scholar
  70. 70.
    Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, Roveda F, de Matos LN, Braga AM, Middlekauff HR, Negrao CE. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol. 2009;135:302–7.PubMedGoogle Scholar
  71. 71.
    Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–86.PubMedGoogle Scholar
  72. 72.
    Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.Google Scholar
  73. 73.
    Gilder M, Ramsbottom R. Measures of cardiac autonomic control in women with differing volumes of physical activity. J Sports Sci. 2008;26:781–6.PubMedGoogle Scholar
  74. 74.
    La Rovere MT, Bigger Jr JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Atrami (autonomic tone and reflexes after myocardial infarction) investigators. Lancet. 1998;351:478–84.PubMedGoogle Scholar
  75. 75.
    Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Heart Circ Physiol. 2002;282:H6–20.PubMedGoogle Scholar
  76. 76.
    Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, Steg PG, Tardif JC, Tavazzi L, Tendera M. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50:823–30.PubMedGoogle Scholar
  77. 77.
    Julien C, Chapuis B, Cheng Y, Barres C. Dynamic interactions between arterial pressure and sympathetic nerve activity: role of arterial baroreceptors. Am J Physiol Regul Integr Comp Physiol. 2003;285:R834–41.PubMedGoogle Scholar
  78. 78.
    Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, Somers VK. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39:168–72.PubMedGoogle Scholar
  79. 79.
    Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058–66.PubMedGoogle Scholar
  80. 80.
    Bristow JD, Honour AJ, Pickering GW, Sleight P, Smyth HS. Diminished baroreflex sensitivity in high blood pressure. Circulation. 1969;39:48–54.PubMedGoogle Scholar
  81. 81.
    Ellenbogen KA, Mohanty PK, Szentpetery S, Thames MD. Arterial baroreflex abnormalities in heart failure. Reversal after orthotopic cardiac transplantation. Circulation. 1989;79:51–8.PubMedGoogle Scholar
  82. 82.
    Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18:7–19.PubMedGoogle Scholar
  83. 83.
    Despas F, Lambert E, Vaccaro A, Labrunee M, Franchitto N, Lebrin M, Galinier M, Senard JM, Lambert G, Esler M, Pathak A. Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens. 2012;30:753–60.PubMedGoogle Scholar
  84. 84.
    Ponikowski P, Chua TP, Anker SD, Francis DP, Doehner W, Banasiak W, Poole-Wilson PA, Piepoli MF, Coats AJ. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001;104:544–9.PubMedGoogle Scholar
  85. 85.
    McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJ, Sobotka PA, Paton JF. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun. 2013;4:2395.PubMedGoogle Scholar
  86. 86.
    Niewinski P, Engelman ZJ, Fudim M, Tubek S, Paleczny B, Jankowska EA, Banasiak W, Sobotka PA, Ponikowski P. Clinical predictors and hemodynamic consequences of elevated peripheral chemosensitivity in optimally treated men with chronic systolic heart failure. J Card Fail. 2013;19:408–15.PubMedGoogle Scholar
  87. 87.
    Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circ Res. 1987;61:779–86.PubMedGoogle Scholar
  88. 88.
    Stickland MK, Fuhr DP, Haykowsky MJ, Jones KE, Paterson DI, Ezekowitz JA, McMurtry MS. Carotid chemoreceptor modulation of blood flow during exercise in healthy humans. J Physiol. 2011;589:6219–30.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Ott C, Mahfoud F, Schmid A, Ditting T, Sobotka PA, Veelken R, Spies A, Ukena C, Laufs U, Uder M, Bohm M, Schmieder RE. Renal denervation in moderate treatment-resistant hypertension. J Am Coll Cardiol. 2013;62:1880–6.PubMedGoogle Scholar
  90. 90.
    Mahfoud F, Ukena C, Schmieder RE, Cremers B, Rump LC, Vonend O, Weil J, Schmidt M, Hoppe UC, Zeller T, Bauer A, Ott C, Blessing E, Sobotka PA, Krum H, Schlaich M, Esler M, Bohm M. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128:132–40.PubMedGoogle Scholar
  91. 91.
    Zuern CS, Eick C, Rizas KD, Bauer S, Langer H, Gawaz M, Bauer A. Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2013;62(22):2124–30.PubMedGoogle Scholar
  92. 92.
    Rocha-Singh KJ, Katholi RE. Renal sympathetic denervation for treatment-resistant hypertension…in moderation. J Am Coll Cardiol. 2013;62:1887–9.PubMedGoogle Scholar
  93. 93.
    Morlin C, Wallin BG, Eriksson BM. Muscle sympathetic activity and plasma noradrenaline in normotensive and hypertensive man. Acta Physiol Scand. 1983;119:117–21.PubMedGoogle Scholar
  94. 94.
    Hart EC, McBryde FD, Burchell AE, Ratcliffe LE, Stewart LQ, Baumbach A, Nightingale A, Paton JF. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension. 2013;62(3):533–41.PubMedGoogle Scholar
  95. 95.
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.PubMedGoogle Scholar
  96. 96.
    Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, Furuta Y, Aizawa Y, Iwafuchi M. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61:450–6.PubMedGoogle Scholar
  97. 97.
    Rafiq K, Noma T, Fujisawa Y, Ishihara Y, Arai Y, Nabi AH, Suzuki F, Nagai Y, Nakano D, Hitomi H, Kitada K, Urushihara M, Kobori H, Kohno M, Nishiyama A. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation. 2012;125:1402–13.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Luippold G, Beilharz M, Muhlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dial Transplant. 2004;19:342–7.PubMedGoogle Scholar
  99. 99.
    Clayton SC, Haack KK, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am J Physiol Renal Physiol. 2011;300:F31–9.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Veelken R, Vogel EM, Hilgers K, Amann K, Hartner A, Sass G, Neuhuber W, Tiegs G. Autonomic renal denervation ameliorates experimental glomerulonephritis. J Am Soc Nephrol: JASN. 2008;19:1371–8.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Wang W, Falk SA, Jittikanont S, Gengaro PE, Edelstein CL, Schrier RW. Protective effect of renal denervation on normotensive endotoxemia-induced acute renal failure in mice. Am J Physiol Renal Physiol. 2002;283:F583–7.PubMedGoogle Scholar
  102. 102.
    Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, Khan AH, Johns EJ. Role of the renal sympathetic nervous system in mediating renal ischaemic injury-induced reductions in renal haemodynamic and excretory functions. Pathology. 2010;42:259–66.PubMedGoogle Scholar
  103. 103.
    van de Borne P. The kidney and the sympathetic system: a short review. Curr Clin Pharmacol. 2013;8(3):175–81.PubMedGoogle Scholar
  104. 104.
    Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.PubMedGoogle Scholar
  105. 105.
    Ezzahti M, Moelker A, Friesema EC, van der Linde NA, Krestin GP, van den Meiracker AH. Blood pressure and neurohormonal responses to renal nerve ablation in treatment-resistant hypertension. J Hypertens. 2014;32(1):135–41.PubMedGoogle Scholar
  106. 106.
    Ahmed H, Neuzil P, Skoda J, Petru J, Sediva L, Schejbalova M, Reddy VY. Renal sympathetic denervation using an irrigated radiofrequency ablation catheter for the management of drug-resistant hypertension. JACC Cardiovasc Interv. 2012;5:758–65.PubMedGoogle Scholar
  107. 107.
    Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, Bohm M, Lambert EA, Krum H, Sobotka PA, Schmieder RE, Ika-Sari C, Eikelis N, Straznicky N, Lambert GW, Esler MD. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013;168(3):2214–20.PubMedGoogle Scholar
  108. 108.
    Seva Pessoa B, van der Lubbe N, Verdonk K, Roks AJ, Hoorn EJ, Danser AH. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol. 2013;9:26–36.PubMedGoogle Scholar
  109. 109.
    Wagman G, Fudim M, Kosmas CE, Panni RE, Vittorio TJ. The neurohormonal network in the raas can bend before breaking. Curr Heart Fail Rep. 2012;9:81–91.PubMedGoogle Scholar
  110. 110.
    Kowalski R, Kreft E, Kasztan M, Jankowski M, Szczepanska-Konkel M. Chronic renal denervation increases renal tubular response to p2x receptor agonists in rats: implication for renal sympathetic nerve ablation. Nephrol Dial Transplant. 2012;27:3443–8.PubMedGoogle Scholar
  111. 111.
    Christy IJ, Denton KM, Anderson WP. Renal denervation potentiates the natriuretic and diuretic effects of atrial natriuretic peptide in anaesthetized rabbits. Clin Exp Pharmacol Physiol. 1994;21:41–8.PubMedGoogle Scholar
  112. 112.
    Kompanowska-Jezierska E, Walkowska A, Johns EJ, Sadowski J. Early effects of renal denervation in the anaesthetised rat: natriuresis and increased cortical blood flow. J Physiol. 2001;531:527–34.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Pettersson A, Hedner J, Hedner T. Renal interaction between sympathetic activity and anp in rats with chronic ischaemic heart failure. Acta Physiol Scand. 1989;135:487–92.PubMedGoogle Scholar
  114. 114.
    Wenting GJ, Blankestijn PJ, Poldermans D, van Geelen J, Derkx FH, Man in’t Veld AJ, Schalekamp MA. Blood pressure response of nephrectomized subjects and patients with essential hypertension to ramipril: indirect evidence that inhibition of tissue angiotensin converting enzyme is important. Am J Cardiol. 1987;59:92D–7.PubMedGoogle Scholar
  115. 115.
    Wang L, Lu CZ, Zhang X, Luo D, Zhao B, Yu X, Xia DS, Chen X, Zhao XD. The effect of catheter based renal synthetic denervation on renin-angiotensin-aldosterone system in patients with resistant hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41:3–7.PubMedGoogle Scholar
  116. 116.
    Di Daniele N, De Francesco M, Violo L, Spinelli A, Simonetti G. Renal sympathetic nerve ablation for the treatment of difficult-to-control or refractory hypertension in a haemodialysis patient. Nephrol Dial Transplant. 2012;27:1689–90.PubMedGoogle Scholar
  117. 117.
    Masuo K, Lambert GW, Esler MD, Rakugi H, Ogihara T, Schlaich MP. The role of sympathetic nervous activity in renal injury and end-stage renal disease. Hypertens Res. 2010;33:521–8.PubMedGoogle Scholar
  118. 118.
    Converse Jr RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.PubMedGoogle Scholar
  119. 119.
    Hering D, Lambert EA, Marusic P, Ika-Sari C, Walton AS, Krum H, Sobotka PA, Mahfoud F, Bohm M, Lambert GW, Esler MD, Schlaich MP. Renal nerve ablation reduces augmentation index in patients with resistant hypertension. J Hypertens. 2013;31(9):1893–900.PubMedGoogle Scholar
  120. 120.
    Greenwood JP, Stoker JB, Mary DA. Single-unit sympathetic discharge: quantitative assessment in human hypertensive disease. Circulation. 1999;100:1305–10.PubMedGoogle Scholar
  121. 121.
    Oliveira VL, Irigoyen MC, Moreira ED, Strunz C, Krieger EM. Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats. Hypertension. 1992;19:II17–21.PubMedGoogle Scholar
  122. 122.
    Janssen BJ, van Essen H, Vervoort-Peters LH, Struyker-Boudier HA, Smits JF. Role of afferent renal nerves in spontaneous hypertension in rats. Hypertension. 1989;13:327–33.PubMedGoogle Scholar
  123. 123.
    Schiller ACP, Haack K, Zucker I. Unilateral renal denervation enhances baroreflex function in concious rabbits with chronic heart failure. Physiologist. 2012;55:A13.19.43.Google Scholar
  124. 124.
    Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, Haller H, Sweep FC, Diedrich A, Jordan J, Tank J. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60:1485–90.PubMedGoogle Scholar
  125. 125.
    Fujisawa Y, Nagai Y, Lei B, Nakano D, Fukui T, Hitomi H, Mori H, Masaki T, Nishiyama A. Roles of central renin-angiotensin system and afferent renal nerve in the control of systemic hemodynamics in rats. Hypertens Res. 2011;34:1228–32.PubMedGoogle Scholar
  126. 126.
    Ito S, Komatsu K, Tsukamoto K, Kanmatsuse K, Sved AF. Ventrolateral medulla at1 receptors support blood pressure in hypertensive rats. Hypertension. 2002;40:552–9.PubMedGoogle Scholar
  127. 127.
    Weyhenmeyer JA, Phillips MI. Angiotensin-like immunoreactivity in the brain of the spontaneously hypertensive rat. Hypertension. 1982;4:514–23.PubMedGoogle Scholar
  128. 128.
    Krum H, Barman N, Schlaich M, Sobotka P, Esler M, Mahfoud F, Bohm M, Dunlap M, Sadowski J, Bartus K, Kapelak B, Rocha-Singh KJ, Katholi RE,Witkowski A, Kadziela J, Januszewicz A, Prejbisz A, Walton AS, Sievert H, Id D, Wunderlich N, Whitbourn R, Rump LC, Vonend O, Saleh A, Thambar S, Nanra R, Zeller T, Erglis A, Sagic D, Boskovic S, Brachmann J, Schmidt M, Wenzel UO, Bart BA, Schmieder RE, Scheinert D, Börgel J, Straley C. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.Google Scholar
  129. 129.
    Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B, Laufs U, Neuberger HR, Bohm M. Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol. 2013;167(6):2846–51.PubMedGoogle Scholar
  130. 130.
    Brandt MC, Reda S, Mahfoud F, Lenski M, Bohm M, Hoppe UC. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol. 2012;60:1956–65.PubMedGoogle Scholar
  131. 131.
    Huang WC, Fang TC, Cheng JT. Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats. Hypertension. 1998;32:249–54.PubMedGoogle Scholar
  132. 132.
    Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Bohm M. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.PubMedGoogle Scholar
  133. 133.
    Ukena C, Mahfoud F, Kindermann I, Barth C, Lenski M, Kindermann M, Brandt MC, Hoppe UC, Krum H, Esler M, Sobotka PA, Bohm M. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58:1176–82.PubMedGoogle Scholar
  134. 134.
    Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Bohm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60:419–24.PubMedGoogle Scholar
  135. 135.
    Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, McQueen M, Koon T, Yusuf S. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol: JASN. 2011;22:1353–64.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Villarreal D, Freeman RH, Johnson RA, Simmons JC. Effects of renal denervation on postprandial sodium excretion in experimental heart failure. Am J Physiol. 1994;266:R1599–604.PubMedGoogle Scholar
  137. 137.
    Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.PubMedGoogle Scholar
  138. 138.
    Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sever PS, Sobotka PA, Francis DP. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from reach-pilot study. Int J Cardiol. 2013;162:189–92.PubMedGoogle Scholar
  139. 139.
    Linz D, Schotten U, Neuberger HR, Bohm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 2011;8:1436–43.PubMedGoogle Scholar
  140. 140.
    Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, Bohm M. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.PubMedGoogle Scholar
  141. 141.
    Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, Wirth K, Bohm M. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension. 2013;61:225–31.PubMedGoogle Scholar
  142. 142.
    Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.PubMedGoogle Scholar
  143. 143.
    Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376:1903–9.PubMedGoogle Scholar
  144. 144.
    Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Ohkubo T, Imai Y, Tsuji I, Nagai K, Watanabe N, Minami N, Itoh O, Bando T, Sakuma M, Fukao A, Satoh H, Hisamichi S, Abe K. Prediction of mortality by ambulatory blood pressure monitoring versus screening blood pressure measurements: a pilot study in ohasama. J Hypertens. 1997;15:357–64.PubMedGoogle Scholar
  146. 146.
    Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354:2368–74.PubMedGoogle Scholar
  147. 147.
    Mancia G, Zanchetti A, Agabiti-Rosei E, Benemio G, De Cesaris R, Fogari R, Pessina A, Porcellati C, Rappelli A, Salvetti A, Trimarco B. Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. Sample study group. Study on ambulatory monitoring of blood pressure and lisinopril evaluation. Circulation. 1997;95:1464–70.PubMedGoogle Scholar
  148. 148.
    Mancia G, Parati G. Ambulatory blood pressure monitoring and organ damage. Hypertension. 2000;36:894–900.PubMedGoogle Scholar
  149. 149.
    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51:55–61.PubMedGoogle Scholar
  150. 150.
    Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, Totsune K, Hoshi H, Satoh H, Imai Y. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47:149–54.PubMedGoogle Scholar
  151. 151.
    Dolan E, Stanton A, Thijs L, Hinedi K, Atkins N, McClory S, Den Hond E, McCormack P, Staessen JA, O’Brien E. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46:156–61.PubMedGoogle Scholar
  152. 152.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Struijker Boudier HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Erdine S, Kiowski W, Agabiti-Rosei E, Ambrosioni E, Lindholm LH, Manolis A, Nilsson PM, Redon J, Struijker-Boudier HA, Viigimaa M, Adamopoulos S, Bertomeu V, Clement D, Farsang C, Gaita D, Lip G, Mallion JM, Manolis AJ, O’Brien E, Ponikowski P, Ruschitzka F, Tamargo J, van Zwieten P, Waeber B, Williams B, The task force for the management of arterial hypertension of the European Society of H, The task force for the management of arterial hypertension of the European Society of C. 2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (esh) and of the European Society of Cardiology (esc). Eur Heart J. 2007;28:1462–536.PubMedGoogle Scholar
  153. 153.
    Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, Hughes AD, Thurston H, O’Rourke M. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the conduit artery function evaluation (cafe) study. Circulation. 2006;113:1213–25.PubMedGoogle Scholar
  154. 154.
    Lindholm LH, Carlberg B, Samuelsson O. Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet. 2005;366:1545–53.PubMedGoogle Scholar
  155. 155.
    Mancia G, Parati G. Office compared with ambulatory blood pressure in assessing response to antihypertensive treatment: a meta-analysis. J Hypertens. 2004;22:435–45.PubMedGoogle Scholar
  156. 156.
    Zuern CS, Rizas KD, Eick C, Stoleriu C, Bunk L, Barthel P, Balletshofer B, Gawaz M, Bauer A. Effects of renal sympathetic denervation on 24-hour blood pressure variability. Front Physiol. 2012;3:134.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5:93–8.PubMedGoogle Scholar
  158. 158.
    Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M, Ota M, Nagai K, Araki T, Satoh H, Ito S, Hisamichi S, Imai Y. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36:901–6.PubMedGoogle Scholar
  159. 159.
    Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from nhanes iii, 1988 to 1994. Hypertension. 2011;57:160–6.PubMedGoogle Scholar
  160. 160.
    Hsieh YT, Tu ST, Cho TJ, Chang SJ, Chen JF, Hsieh MC. Visit-to-visit variability in blood pressure strongly predicts all-cause mortality in patients with type 2 diabetes: a 5.5-year prospective analysis. Eur J Clin Invest. 2012;42:245–53.PubMedGoogle Scholar
  161. 161.
    Perticone F, Ceravolo R, Pujia A, Ventura G, Iacopino S, Scozzafava A, Ferraro A, Chello M, Mastroroberto P, Verdecchia P, Schillaci G. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104:191–6.PubMedGoogle Scholar
  162. 162.
    Redfield MM, Jacobsen SJ, Burnett Jr JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA: J Am Med Assoc. 2003;289:194–202.Google Scholar
  163. 163.
    Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, Capra A, Giannattasio C, Dell’Oro R, Grassi G, Sega R, Mancia G. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458–64.PubMedGoogle Scholar
  164. 164.
    Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.PubMedGoogle Scholar
  165. 165.
    Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S, Harris KE, Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlof B. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA: J Am Med Assoc. 2004;292:2343–9.Google Scholar
  166. 166.
    Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23:876–81.PubMedGoogle Scholar
  167. 167.
    Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.PubMedGoogle Scholar
  168. 168.
    Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, Bosch J, Sussex B, Probstfield J, Yusuf S, Heart Outcomes Prevention Evaluation I. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.PubMedGoogle Scholar
  169. 169.
    Mancini GB, Dahlof B, Diez J. Surrogate markers for cardiovascular disease: structural markers. Circulation. 2004;109:IV22–30.PubMedGoogle Scholar
  170. 170.
    Devereux RB, Agabiti-Rosei E, Dahlof B, Gosse P, Hahn RT, Okin PM, Roman MJ. Regression of left ventricular hypertrophy as a surrogate end-point for morbid events in hypertension treatment trials. J Hypertens Suppl. 1996;14:S95–101; discussion S101–2.PubMedGoogle Scholar
  171. 171.
    Dahlof B, Devereux R, de Faire U, Fyhrquist F, Hedner T, Ibsen H, Julius S, Kjeldsen S, Kristianson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H. The losartan intervention for endpoint reduction (life) in hypertension study: rationale, design, and methods. The life study group. Am J Hypertens. 1997;10:705–13.PubMedGoogle Scholar
  172. 172.
    Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S, Harris KE, Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlof B, Investigators LS. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA: J Am Med Assoc. 2004;292:2343–9.Google Scholar
  173. 173.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.PubMedGoogle Scholar
  174. 174.
    Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, Castelli WP. Left ventricular mass and risk of stroke in an elderly cohort. The Framingham Heart Study. JAMA: J Am Med Assoc. 1994;272:33–6.Google Scholar
  175. 175.
    Liao Y, Cooper RS, McGee DL, Mensah GA, Ghali JK. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA: J Am Med Assoc. 1995;273:1592–7.Google Scholar
  176. 176.
    Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS. The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med. 1992;117:831–6.PubMedGoogle Scholar
  177. 177.
    Bolognese L, Dellavesa P, Rossi L, Sarasso G, Bongo AS, Scianaro MC. Prognostic value of left ventricular mass in uncomplicated acute myocardial infarction and one-vessel coronary artery disease. Am J Cardiol. 1994;73:1–5.PubMedGoogle Scholar
  178. 178.
    Fagard RH, Pardaens K, Staessen JA, Thijs L. Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men. Hypertension. 1996;28:31–6.PubMedGoogle Scholar
  179. 179.
    Kokkinos P, Myers J, Faselis C, Panagiotakos DB, Doumas M, Pittaras A, Manolis A, Kokkinos JP, Karasik P, Greenberg M, Papademetriou V, Fletcher R. Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation. 2010;122:790–7.PubMedGoogle Scholar
  180. 180.
    Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–9.PubMedGoogle Scholar
  181. 181.
    Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.PubMedGoogle Scholar
  182. 182.
    Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, Jeppesen J. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664–70.PubMedGoogle Scholar
  183. 183.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.PubMedGoogle Scholar
  184. 184.
    London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension. 2001;38:434–8.PubMedGoogle Scholar
  185. 185.
    Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, Eber B. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.PubMedGoogle Scholar
  186. 186.
    Tropeano AI, Boutouyrie P, Pannier B, Joannides R, Balkestein E, Katsahian S, Laloux B, Thuillez C, Struijker-Boudier H, Laurent S. Brachial pressure-independent reduction in carotid stiffness after long-term angiotensin-converting enzyme inhibition in diabetic hypertensives. Hypertension. 2006;48:80–6.PubMedGoogle Scholar
  187. 187.
    Karalliedde J, Smith A, DeAngelis L, Mirenda V, Kandra A, Botha J, Ferber P, Viberti G. Valsartan improves arterial stiffness in type 2 diabetes independently of blood pressure lowering. Hypertension. 2008;51:1617–23.PubMedGoogle Scholar
  188. 188.
    Stewart AD, Jiang B, Millasseau SC, Ritter JM, Chowienczyk PJ. Acute reduction of blood pressure by nitroglycerin does not normalize large artery stiffness in essential hypertension. Hypertension. 2006;48:404–10.PubMedGoogle Scholar
  189. 189.
    Gillman MW, Kannel WB, Belanger A, D’Agostino RB. Influence of heart rate on mortality among persons with hypertension: the Framingham Study. Am Heart J. 1993;125:1148–54.PubMedGoogle Scholar
  190. 190.
    Wannamethee G, Shaper AG, Macfarlane PW. Heart rate, physical activity, and mortality from cancer and other noncardiovascular diseases. Am J Epidemiol. 1993;137:735–48.PubMedGoogle Scholar
  191. 191.
    Bohm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L. Heart rate as a risk factor in chronic heart failure (shift): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet. 2010;376:886–94.PubMedGoogle Scholar
  192. 192.
    Reil JC, Custodis F, Swedberg K, Komajda M, Borer JS, Ford I, Tavazzi L, Laufs U, Bohm M. Heart rate reduction in cardiovascular disease and therapy. Clin Res Cardiol. 2011;100:11–9.PubMedGoogle Scholar
  193. 193.
    Kannel WB, Kannel C, Paffenbarger Jr RS, Cupples LA. Heart rate and cardiovascular mortality: the Framingham study. Am Heart J. 1987;113:1489–94.PubMedGoogle Scholar
  194. 194.
    Swedberg K, Komajda M, Bohm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L. Ivabradine and outcomes in chronic heart failure (shift): a randomised placebo-controlled study. Lancet. 2010;376:875–85.PubMedGoogle Scholar
  195. 195.
    Bohm M, Borer J, Ford I, Gonzalez-Juanatey JR, Komajda M, Lopez-Sendon J, Reil JC, Swedberg K, Tavazzi L. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the shift study. Clin Res Cardiol. 2013;102:11–22.PubMedGoogle Scholar
  196. 196.
    He B, Scherlag BJ, Nakagawa H, Lazzara R, Po SS. The intrinsic autonomic nervous system in atrial fibrillation: a review. ISRN Cardiol. 2012;2012:490674.PubMedCentralPubMedGoogle Scholar
  197. 197.
    Podrid PJ, Fuchs T, Candinas R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation. 1990;82:I103–13.PubMedGoogle Scholar
  198. 198.
    Knecht S, O’Neill MD, Verbeet T. Rhythm control versus rate control for atrial fibrillation. N Engl J Med. 2008;359:1522; author reply 1522.PubMedGoogle Scholar
  199. 199.
    Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation. 1998;98:946–52.PubMedGoogle Scholar
  200. 200.
    Kirchhof P, Auricchio A, Bax J, Crijns H, Camm J, Diener HC, Goette A, Hindricks G, Hohnloser S, Kappenberger L, Kuck KH, Lip GY, Olsson B, Meinertz T, Priori S, Ravens U, Steinbeck G, Svernhage E, Tijssen J, Vincent A, Breithardt G. Outcome parameters for trials in atrial fibrillation: executive summary. Eur Heart J. 2007;28:2803–17.PubMedGoogle Scholar
  201. 201.
    Linz D, Wirth K, Ukena C, Mahfoud F, Poss J, Linz B, Bohm M, Neuberger HR. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm. 2013;10(10):1525–30.PubMedGoogle Scholar
  202. 202.
    Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Bohm M. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol. 2012;101:63–7.PubMedGoogle Scholar
  203. 203.
    Daviglus ML, Liao Y, Greenland P, Dyer AR, Liu K, Xie X, Huang CF, Prineas RJ, Stamler J. Association of nonspecific minor st-t abnormalities with cardiovascular mortality: the Chicago Western Electric Study. JAMA: J Am Med Assoc. 1999;281:530–6.Google Scholar
  204. 204.
    de Groot E, Hovingh GK, Wiegman A, Duriez P, Smit AJ, Fruchart JC, Kastelein JJ. Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation. 2004;109:III33–8.PubMedGoogle Scholar
  205. 205.
    Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.PubMedGoogle Scholar
  206. 206.
    Klein IH, Ligtenberg G, Neumann J, Oey PL, Koomans HA, Blankestijn PJ. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol: JASN. 2003;14:3239–44.PubMedGoogle Scholar
  207. 207.
    Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, Chiang PH, Hsu CC, Sung PK, Hsu YH, Wen SF. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet. 2008;371:2173–82.PubMedGoogle Scholar
  208. 208.
    Weiner DE, Tabatabai S, Tighiouart H, Elsayed E, Bansal N, Griffith J, Salem DN, Levey AS, Sarnak MJ. Cardiovascular outcomes and all-cause mortality: exploring the interaction between ckd and cardiovascular disease. Am J Kidney Dis. 2006;48:392–401.PubMedGoogle Scholar
  209. 209.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.PubMedGoogle Scholar
  210. 210.
    Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.PubMedCentralPubMedGoogle Scholar
  211. 211.
    Wang Y, Seto SW, Golledge J. Therapeutic effects of renal denervation on renal failure. Curr Neurovasc Res. 2013;10:172–84.PubMedGoogle Scholar
  212. 212.
    Ott C, Janka R, Schmid A, Titze S, Ditting T, Sobotka PA, Veelken R, Uder M, Schmieder RE. Vascular and renal hemodynamic changes after renal denervation. Clin J Am Soc Nephrol: CJASN. 2013;8:1195–201.PubMedCentralPubMedGoogle Scholar
  213. 213.
    Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Bohm M, Cremers B, Esler MD, Schlaich MP. Renal denervation in moderate to severe ckd. J Am Soc Nephrol: JASN. 2012;23:1250–7.PubMedCentralPubMedGoogle Scholar
  214. 214.
    Ott C, Schmid A, Ditting T, Sobotka PA, Veelken R, Uder M, Schmieder RE. Renal denervation in a hypertensive patient with end-stage renal disease and small arteries: a direction for future research. J Clin Hypertens (Greenwich). 2012;14:799–801.Google Scholar
  215. 215.
    Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, Reid J, Van Zwieten PA. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.PubMedGoogle Scholar
  216. 216.
    Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108:3097–101.PubMedGoogle Scholar
  217. 217.
    Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens. 2001;14:304S–9.PubMedGoogle Scholar
  218. 218.
    Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Paul A. Sobotka
    • 1
  • David G. Harrison
    • 2
  • Marat Fudim
    • 3
  1. 1.Division of Cardiology, Department of MedicineThe Ohio State UniversityWest St. PaulUSA
  2. 2.Medicine and PharmacologyVanderbilt Medical CenterNashvilleUSA
  3. 3.Internal MedicineVanderbilt Medical CenterNashvilleUSA

Personalised recommendations