Transmyocardial Laser Revascularization: Physiology, Pathology, and Basic Research Concepts

  • Anthony J. Minisi
  • Deepak D. Banerjee
  • Laxmi B. Mohanty

Abstract

Significant improvements in the outcome of cardiac surgery and percutaneous coronary intervention (PCI) have led to enhanced survival among patients with severe coronary artery disease. However, it has also created a population of patients never before encountered in the field of Cardiovascular Medicine. These patients, who often have had coronary bypass surgery and/or PCI multiple times, are characterized by far advanced, end-stage coronary artery disease and disabling anginal symptoms which are refractory to medical therapy with maximal doses of antianginal drugs such as nitrates, beta blockers, calcium channel blockers, and ranolazine. New therapeutic modalities are required to treat this group of patients. One of these modalities is transmyocardial laser revascularization (TMLR). This technique has been shown to improve symptomatic status in patients with end-stage coronary artery disease who cannot receive further traditional surgical or percutaneous revascularization. In this chapter, we will review the clinical experience with TMLR as well as the potential mechanisms of action by which TMLR can improve quality of life in this select group of patients.

Keywords

Coronary artery disease Myocardial ischemia Angina Transmyocardial laser 

References

  1. 1.
    Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis—how many patients might be eligible? Am J Cardiol. 1999;84:598–600.PubMedCrossRefGoogle Scholar
  2. 2.
    Horvath KA, Cohn LH, Cooley DA, Crew JR, Frazier OH, Griffith BP, Kadipasaoglu K, Lansing A, Mannting F, March R, Mirhoseini MR, Smith C. Transmyocardial laser revascularization: results of a multicenter trial with transmyocardial laser revascularization used as sole therapy for end-stage coronary artery disease. J Thorac Cardiovasc Surg. 1997;113:645–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Schofield PM, Sharples LD, Caine N, Burns S, Tait S, Wistow T, Buxton M, Wallwork J. Transmyocardial laser revascularization in patients with refractory angina: a randomised controlled trial. Lancet. 1999;353:519–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen KB, Dowling RD, Fudge TL, Schoettle GP, Selinger SL, Gangahar DM, Angell WW, Petracek MR, Shaar CJ, O’Neill WW. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina. N Engl J Med. 1999;341:1029–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Frazier OH, March RJ, Horvath KA. Transmyocardial revascularization with a carbon dioxide laser in patients with end-stage coronary artery disease. N Engl J Med. 1999;341:1021–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Horvath KA, Mannting F, Cummings N, Shernan SK, Cohn LH. Transmyocardial laser revascularization, operative techniques, and clinical results at two years. J Thorac Cardiovasc Surg. 1996;111:1047–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Aaberge L, Nordstrand K, Dragsund M, Saatvedt K, Endresen K, Golf S, Geiran O, Abdelnoor M, Forfang K. Transmyocardial revascularization with CO2 laser in patients with refractory angina pectoris. J Am Coll Cardiol. 2000;35:1170–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Jones JW, Schmidt SE, Richman BW, Miller CC, Sapire KJ, Burkhoff D, Baldwin JC. Holmium:YAG laser transmyocardial revascularization relieves angina and improves functional status. Ann Thorac Surg. 1999;67:1596–602.PubMedCrossRefGoogle Scholar
  9. 9.
    Burkhoff D, Schmidt S, Schulman SP, Myers J, Resar J, Becker LC, Weiss J, Jones JW. Transmyocardial laser revascularisation compared with continued medical therapy for treatment of refractory angina pectoris: a prospective randomised trial. Lancet. 1999;354:885–90.PubMedCrossRefGoogle Scholar
  10. 10.
    van der Sloot JA, Huikeshoven M, Tukkie R, Verberne HJ, van der Meulen J, van Eck-Smit BL, van Gemert MJ, Tijssen JG, Beek JF. Transmyocardial revascularization using an XeCl excimer laser: results of a randomized trial. Ann Thorac Surg. 2004;78:875–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Aaberge L, Rootwelt K, Blomhoff S, Saatvedt K, Abdelnoor M, Forfang K. Continued symptomatic improvement three to five years after transmyocardial revascularization with CO2 laser. J Am Coll Cardiol. 2002;39:1588–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Allen KB, Dowling RD, Angell WW, Gangahar DM, Fudge TL, Richenbacher W, Selinger SL, Petracek MR, Murphy D. Transmyocardial revascularization: 5 year follow-up of a prospective randomized multicenter trial. Ann Thorac Surg. 2004;77:1228–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Horvath KA, Aranki SF, Cohn LH, March RJ, Frazier OH, Kadipasaoglu KA, Boyce SW, Lytle BW, Landolfo KP, Lowe JE, Hattler B, Griffith BP, Lansing AM. Sustained angina relief 5 years after transmyocardial laser revascularization with a CO2 laser. Circulation. 2001;104:I81–4.PubMedCrossRefGoogle Scholar
  14. 14.
    De Carlo M, Milano AD, Pratali S, Levantino M, Mariotti R, Bortolotti U. Symptomatic improvement after transmyocardial laser revascularization: how long does it last? Ann Thorac Surg. 2000;70:1130–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Pratali S, Chiaramonti F, Milano A, Bortolotti U. Transmyocardial laser revascularization 12 years later. Interact Cardiovasc Thorac Surg. 2010;11:480–1.PubMedCrossRefGoogle Scholar
  16. 16.
    Wearn JT, Mettier SR, Klumpp TG, Zscthesche LJ. The nature of the vascular communications between the coronary arteries and the chambers of the heart. Am Heart J. 1933;9:143–64.CrossRefGoogle Scholar
  17. 17.
    Tsang JC-C, Chiu RC-J. The phantom of “myocardial sinusoids”: a historical reappraisal. Ann Thorac Surg. 1995;60:1831–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Gassler N, Wintzer H-O, Stubbe H-M, Wullbrand A, Helmchen U. Transmyocardial laser revascularization: histological features in human nonresponder myocardium. Circulation. 1997;95:371–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Burkhoff D, Fisher PE, Apfelbaum M, Kohmotoi T, DeRosa CM, Smith CR. Histologic appearance of transmyocardial laser channels after 4-1/2 weeks. Ann Thorac Surg. 1996;61:1532–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Krabatsch T, Schaper F, Leder C, Tulsner J, Thalmann U, Hetzer R. Histological findings after transmyocardial laser revascularization. J Cardiac Surg. 1996;11:326–31.CrossRefGoogle Scholar
  21. 21.
    Sigel JE, Abramovitch CM, Lytle BW, Ratliff NB. Transmyocardial laser revascularization: three sequential autopsy case. J Thorac Cardiovasc Surg. 1998;115:1381–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Horvath KA, Chiu E, Maun DC, Lomasney JW, Greene R, Pearce WH, Fullerton DA. Up-regulation of vascular endothelial growth factor mRNA and angiogenesis after transmyocardial laser revascularization. Ann Thorac Surg. 1999;68:825–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Spanier T, Smith CR, Burkhoff D. Angiogenesis: a possible mechanism underlying the clinical benefits of transmyocardial laser revascularization. J Clin Laser Med Surg. 1997;15:269–73.PubMedGoogle Scholar
  24. 24.
    Kohmoto T, DeRosa CM, Yamamoto N, Fisher PE, Failey P, Smith CR, Burkhoff D. Evidence of vascular growth associated with laser treatment of normal canine myocardium. Ann Thorac Surg. 1998;65:1360–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Hughes CG, Lowe JE, Kypson AP, St. Louis JD, Pippen AM, Peters KG, Coleman RE, DeGrado TR, Donovan CL, Annex BH, Landolfo KP. Neovascularization after transmyocardial laser revascularization in a model of chronic ischemia. Ann Thorac Surg. 1998;66:2029–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Malekan R, Reynolds C, Narula N, Kelley ST, Suzuki Y, Bridges CR. Angiogenesis in transmyocardial laser revascularization: a nonspecific response to injury. Circulation. 1998;98:II62–6.PubMedGoogle Scholar
  27. 27.
    Yamamoto N, Kohmoto T, Gu A, DeRosa C, Smith CR, Burkhoff D. Angiogenesis is enhanced in ischemic canine myocardium by transmyocardial laser revascularization. J Am Coll Cardiol. 1998;31:1426–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Li W, Chiba Y, Kimura T, Morioka K, Uesaka T, Ihaya A, Muraoka R. Transmyocardial laser revascularization induced angiogenesis correlated with the expression of matrix metalloproteinases and platelet-derived endothelial cell growth factor. Eur J Cardiothorac Surg. 2001;19:156–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Domkowski PW, Biswas SS, Steenbergen C, Lowe JE. Histological evidence of angiogenesis 9 months after transmyocardial laser revascularization. Circulation. 2001;103:469–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Stone GW, Teirstein PS, Rubenstein R, Schmidt D, Whitlow PL, Kosinski EJ, Power JA. A prospective, multicenter, randomized trial of percutaneous transmyocardial laser revascularization in patients with nonrecanalizable chronic total occlusions. J Am Coll Cardiol. 2002;15:1581–7.CrossRefGoogle Scholar
  31. 31.
    Bristow M. The surgically denervated, transplanted heart. Circulation. 1990;82:658–60.PubMedCrossRefGoogle Scholar
  32. 32.
    White JC. Cardiac pain: anatomic pathways and physiologic mechanisms. Circulation. 1957;16:644–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Baker DG, Coleridge HM, Coleridge JCG, Nerdrum T. Search for a cardiac nociceptor: stimulation by bradykinin of afferent sympathetic nerve endings in the cat. J Physiol. 1980;306:519–36.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Minisi AJ, Thames MD. Distribution of left ventricular sympathetic afferents demonstrated by reflex responses to transmural myocardial ischemia and to intracoronary and epicardial bradykinin. Circulation. 1993;87:240–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Malliani A, Recordati G, Schwartz PJ. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J Physiol. 1973;229:457–69.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lombardi F, Della Bella P, Casati R, Malliani A. Effects of intracoronary administration of bradykinin on the impulse activity of afferent sympathetic unmyelinated fibers with left ventricular endings in the cat. Circ Res. 1981;48:69–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Uchida Y, Kamisaka K, Murao S, Ueda H. Mechanosensitivity of afferent cardiac sympathetic nerve fiber. Am J Physiol. 1974;226:1088–93.PubMedGoogle Scholar
  38. 38.
    Bishop VS, Malliani A, Thoren P. Cardiac mechanoreceptors. In: Shepherd JT, Abboud FM, editors. Handbook of physiology: peripheral circulation and organ blood flow. Washington, DC: American Physiological Society; 1983. p. 497–555.Google Scholar
  39. 39.
    Brown A. Cardiac reflexes. In: Berne RM, editor. Handbook of physiology: the heart. Washington, DC: American Physiological Society; 1983. p. 667–89.Google Scholar
  40. 40.
    Malliani A. Afferent cardiovascular sympathetic nerve fibers and their function in the neural regulation of the circulation. In: Hainsworth R, Kidd C, Linden RJ, editors. Cardiac receptors. Cambridge, UK: Cambridge University Press; 1979. p. 319–38.Google Scholar
  41. 41.
    Uchida Y, Murao S. Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jpn Heart J. 1974;15:84–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown AM. Excitation of afferent cardiac sympathetic nerve fibers during myocardial ischemia. J Physiol (London). 1967;190:35–53.CrossRefGoogle Scholar
  43. 43.
    Uchida Y, Murao S. Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol. 1974;226:1094–9.PubMedGoogle Scholar
  44. 44.
    Felder RB, Thames MD. Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ Res. 1979;45:728–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Felder RB, Thames MD. The cardiocardiac sympathetic reflex during coronary occlusion in anesthetized dogs. Circ Res. 1981;48:685–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Whittaker P. Detection and assessment of laser-mediated injury in transmyocardial revascularization. J Clin Laser Med Surg. 1997;15:261–7.PubMedGoogle Scholar
  47. 47.
    Kwong KF, Kanellopoulos GK, Nickols JC, Pogwizd SM, Saffitz JE, Schuellser RB, Sundt III TM. Transmyocardial laser treatment denervates canine myocardium. J Thorac Cardiovasc Surg. 1997;114:883–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Wooten GF, Coyle JT. Axonal transport of catecholamine synthesizing and metabolizing enzymes. J Neurochem. 1973;20:1361–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Hughes GC, Baklanov DV, Biswas SS, Pippen AM, DeGrado TR, Coleman RE, Landolfo CK, Lowe JE, Annex BH, Landolfo KP. Regional cardiac sympathetic innervation early and late after transmyocardial laser revascularization. J Card Surg. 2004;19:21–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Al-Sheikh T, Allen KB, Straka SP, Heimansohn DA, Fain RL, Hutchins GD, Sawada SG, Zipes DP, Engelstein ED. Cardiac sympathetic denervation after transmyocardial laser revascularization. Circulation. 1999;100:135–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe Jr ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Beek JF, van der Sloot JAP, Huikeshoven M, Verberne HJ, van Eck-Smit BLF, van der Meulen J, Tijssen JGP, van Gemert MJC, Tukkie R. Cardiac denervation after clinical transmyocardial laser revascularization: short-term and long-term iodine 123-labeled meta-iodobenzylguanide scintigraphic evidence. J Thorac Cardiovasc Surg. 2004;127:517–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Muxi A, Magrina J, Martin F, Josa M, Fuster D, Setoain FJ, Perez-Villa F, Pavia J, Bosch X. Technetium 99m-labeled tetrofosmin and iodine 123-labeled metaiodobenzylguanidine scintigraphy in the assessment of transmyocardial laser revascularization. J Thorac Cardiovasc Surg. 2003;125:1493–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Hirsch GM, Thompson GW, Arora RC, Hirsch KJ, Sullivan JA, Armour JA. Transmyocardial laser revascularization does not denervate the canine heart. Ann Thorac Surg. 1999;68:460–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Arora RC, Hirsch GM, Hirsch K, Armour JA. Transmyocardial laser revascularization remodels the intrinsic cardiac nervous system in a chronic setting. Circulation. 2001;104:I115–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Kaufman MP, Baker BG, Coleridge HM, Coleridge JCG. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980;46:476–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Minisi AJ, Topaz O, Quinn MS, Mohanty L. Cardiac nociceptive reflexes following transmyocardial laser revascularization: implications for the neural hypothesis of angina relief. J Thorac Cardiovasc Surg. 2001;122:712–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Van Gemert MJC, Welch AJ, Jacques SL, Cheong WF, Star WM. Light distribution, optical properties, and cardiovascular tissues. In: Abela GS, editor. Lasers in cardiovascular medicine and surgery: fundamentals and techniques, vol. 8. Boston: Kluwer Academic Publishers; 1990. p. 99–110.Google Scholar
  59. 59.
    Banerjee DD, Quinn MS, Mohanty LB, Minisi AJ. Failure of chronic transmyocardial laser revascularization to alter cardiac nociceptive reflexes: implications for the treatment of angina pectoris. Lasers Med Sci. 2008;23:155–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Barber MJ, Mueller TM, Davies BG, Zipes DP. Phenol topically applied to canine left ventricular epicardium interrupts sympathetic but not vagal afferents. Circ Res. 1984;55:532–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Minisi AJ, Thames MD. Activation of cardiac sympathetic afferents during coronary occlusion: evidence for reflex activation of the sympathetic nervous system during transmural myocardial ischemia in the dog. Circulation. 1991;84:357–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Lawrie GM, Morris Jr GC, Silvers A, Wagner WF, Baron AE, Beltangady SS, Glaeser DH, Chapman DW. The influence of residual disease after coronary bypass on the 5-year survival rate of 1274 men with coronary artery disease. Circulation. 1982;66:717–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Bell MR, Gersh BJ, Schaff HV, Holmes Jr DR, Fisher LD, Alderman EL, Myers WO, Parsons LS, Reeder GS. Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery. A report from the Coronary Artery Surgery Study (CASS). Circulation. 1992;86:446–57.PubMedCrossRefGoogle Scholar
  64. 64.
    Osswald BR, Blackstone EH, Tochtermann U, Schweiger P, Thomas G, Vahl CF, Hagl S. Does the completeness of revascularization affect early survival after coronary artery bypass grafting in elderly patients? Eur J Cardiothorac Surg. 2001;20:120–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Kleisli T, Cheng W, Jacobs MJ, Mirocha J, Derobertis MA, Kass RM, Blanche C, Fontana GP, Raissi SS, Magliato KE, Trento A. In the current era, complete revascularization improves survival after coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2005;129:1283–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Allen KB, Dowling RD, DelRossi AJ, Realyvasques F, Lefrak EA, Pfeffer TA, Fudge TL, Mostovych M, Schuch D, Szentpetery S, Shaar CJ. Transmyocardial laser revascularization combined with coronary artery bypass grafting: a multicenter, blinded, prospective, randomized, controlled trail. J Thorac Cardiovasc Surg. 2000;119:540–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Frazier OH, Tuzun E, Eichstadt H, Boyce SW, Lansing AM, March RJ, Sartori M, Kadipasaoglu KA. Transmyocardial laser revascularization as an adjunct to coronary artery bypass grafting. A randomized, multicenter study with 4-year follow-up. Tex Heart Inst J. 2004;31:231–9.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Loubani M, Chin D, Leverment JN, Galinanes M. Mid-term results of combined transmyocardial laser revascularization and coronary artery bypass. Ann Thorac Surg. 2003;76:1163–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Allen KB, Dowling RD, Schuch DR, Pfeffer TA, Marra S, Lefrak EA, Fudge TL, Mostovych M, Szentpetery S, Saha SP, Murphy D, Dennis H. Adjunctive transmyocardial revascularization: five-year follow-up of a prospective, randomized trial. Ann Thorac Surg. 2004;78:458–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Cheng D, Diegeler A, Allen K, Weisel R, Lutter G, Sartori M, Asai T, Aaberge L, Horvath K, Martin J. Transmyocardial laser revascularization: a meta-analysis and systematic review of controlled trials. Innovations. 2006;1:295–313.PubMedGoogle Scholar
  71. 71.
    Patel AN, Spadaccio C, Kuzman M, Park E, Fischer DW, Stice SL, Mullangi C, Toma C. Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system. Cell Transplant. 2007;16:899–905.PubMedCrossRefGoogle Scholar
  72. 72.
    Klein HM, Ghodsizad A, Borowski A, Saleh A, Draganov J, Poll L, Stoldt V, Feifel N, Piecharczek C, Burchardt ER, Stockschlader M, Gams E. Autologous bone marrow-derived stem cell therapy in combination with TMLR. A novel therapeutic option for endstage coronary heart disease: report on 2 cases. Heart Surg Forum. 2004;7:E416–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Gowdak LHW, Schettert IT, Rochitte CE, Rienzo M, Lisboa LAF, Dallan LAO, Cesar LAM, Krieger JE, Ramires JAF, de Oliveira SA. Transmyocardial laser revascularization plus cell therapy for refractory angina. Int J Cardiol. 2008;127:295–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Reyes G, Allen KB, Alvarez P, Alegre A, Aguado B, Olivera M, Caballero P, Rodriguez J, Duarte J. Mid term results after bone marrow laser revascularization for treating refractory angina. BMC Cardiovasc Disord. 2010;10:42.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Babin-Ebell J, Sievers HH, Charitos EI, Klein HM, Jung F, Hellberg AK, Depping R, Sier HA, Marxsen J, Stoelting S, Kraatz EG, Wagner KF. Transmyocardial laser revascularization combined with intramyocardial endothelial progenitor cell transplantation in patients with intractable ischemic heart disease ineligible for conventional revascularization: preliminary results from a highly selected small patient cohort. Thorac Cardiovasc Surg. 2010;58:11–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Atluri P, Panlilio CM, Liao GP, Suarez EE, McCormick RC, Hiesinger W, Cohen JE, Smith MJ, Patel AB, Feng W, Woo YJ. Transmyocardial revascularization to enhance myocardial vasculogenesis and hemodynamic function. J Thorac Cardiovasc Surg. 2008;135:283–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamamoto N, Kohmoto T, Roethy W, Gu A, DeRosa C, Rabbani LE, Smith CR, Burkhoff D. Histologic evidence that basic fibroblast growth factor enhances the angiogenic effects of transmyocardial laser revascularization. Basic Res Cardiol. 2000;95:55–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Lutter G, Attmann T, Heilmann C, von Samson P, von Specht B, Beyersdorf F. The combined use of transmyocardial laser revascularization (TMLR) and fibroblastic growth factor (FGF-2) enhances perfusion and regional contractility in chronically ischemic porcine hearts. Eur J Cardiothorac Surg. 2002;22:753–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Hardy RI, Bove KE, James FW, Kaplan S, Goldman L. A histologic study of laser-induced transmyocardial channels. Lasers Surg Med. 1987;6:563–73.PubMedCrossRefGoogle Scholar
  80. 80.
    Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res. 1998;83:117–32.PubMedCrossRefGoogle Scholar
  81. 81.
    Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993;88:1264–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Benjamin IJ, Kroger B, Williams RS. Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci U S A. 1990;87:6263–7.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Mehta HB, Popovich BK, Dillmann WH. Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ Res. 1988;63:512–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Knowlton AA, Brecher P, Apstein CS. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest. 1991;87:139–47.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation. 2000;102:III216–21.PubMedGoogle Scholar
  86. 86.
    McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O’Toole D, O’Brien T. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013;24:840–51.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, Kim HW, Wen Z, Rao F, Modi RM, Yu X, Ashraf M. Heat shock improves sca-1+ stem cells survival and directs ischemic cardiomyocytes towards a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells. 2014;32:462–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. Delayed effect of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993;72:1293–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.PubMedCrossRefGoogle Scholar
  90. 90.
    Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol. 1991;260:H796–804. Heart Circ Physiol 29.PubMedGoogle Scholar
  91. 91.
    Donnelly TJ, Sievers RE, Vissern FL, Welch WJ, Wolfe CL. Heat shock protein induction in rat hearts: a role for improved myocardial salvage after ischemia and reperfusion? Circulation. 1992;85:769–78.PubMedCrossRefGoogle Scholar
  92. 92.
    Currie RW, Tanguay RM, Kingma Jr JG. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation. 1993;87:963–71.PubMedCrossRefGoogle Scholar
  93. 93.
    Hutter MM, Sievers RE, Barbosa V, Wolfe CL. Heat-shock protein induction in rat hearts: a direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation. 1994;89:355–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Williams RS, Thomas JA, Fina M, German Z, Benjamin IJ. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest. 1993;92:503–8.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Mestril R, Chi SH, Sayen MR, O’Reilly K, Dillman WH. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against stimulated ischemia-induced injury. J Clin Invest. 1994;93:759–67.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Okubo S, Wildner O, Shah MR, Chelliah JC, Hess ML, Kukreja RC. Gene transfer of heat –shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation. 2001;103:877–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Plumier JC, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest. 1995;95:1854–60.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest. 1995;95:1446–56.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavva S, Wiethoff A, Sherry AD, Malloy CR, Williams RS. Cardioprotective effects of 70-kDa heat shock protein transgenic mice. Proc Natl Acad Sci U S A. 1996;93:2339–42.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Hutter JJ, Mesril R, Tam WK, Sievers RE, Dillmann WH, Wolfe CL. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation. 1996;94:1408–11.PubMedCrossRefGoogle Scholar
  101. 101.
    Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, Ferguson Jr TB, Fihn SD, Fraker Jr TD, Gardin JM, O’Rourke RA, Pasternak RC, Williams SV. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation. 2003;107:149–58.PubMedCrossRefGoogle Scholar
  102. 102.
    Bridges CR, Horvath KA, Nugent WC, Shahian DM, Haan CK, Shemin RJ, Allen KB, Edwards FH. The Society of Thoracic Surgeons practice guideline series: transmyocardial laser revascularization. Ann Thorac Surg. 2004;77:1494–502.PubMedCrossRefGoogle Scholar
  103. 103.
    Diegeler A, Cheng D, Allen K, Weisel R, Lutter G, Sartori M, Asai T, Aaberge L, Horvath K, Martin J. Transmyocardial laser revascularization: a consensus statement of the International Society of Minimally Invasive Cardiothoracic Surgery (ISMICS) 2006. Innovations. 2006;1:314–22.PubMedGoogle Scholar
  104. 104.
    Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas P, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King III SB, Kligfield PD, Krumholz HM, Kwong RYK, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, Shaw LJ, Sikkema JD, Smith Jr CR, Smith Jr SC, Spertus JA, Williams SV. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126:e354–471.PubMedCrossRefGoogle Scholar
  105. 105.
    Peterson ED, Kaul P, Kaczmarek RG, Hammill BG, Armstrong PW, Bridges CR, Ferguson TB. From controlled trials to clinical practice: monitoring transmyocardial revascularization use and outcomes. J Am Coll Cardiol. 2003;42:1611–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Anthony J. Minisi
    • 1
  • Deepak D. Banerjee
    • 1
    • 2
  • Laxmi B. Mohanty
    • 1
    • 3
  1. 1.Division of CardiologyMcGuire VA Medical Center and Medical College of Virginia, Campus of Virginia Commonwealth UniversityRichmondUSA
  2. 2.Interventional CardiologyMemorial Hospital of Martinsville and Henry CountiesMartinsvilleUSA
  3. 3.Department of Pathology and Laboratory MedicineMcGuire VA Medical CenterRichmondUSA

Personalised recommendations