Skip to main content

Laser-Based Approach to Cardiac Mapping and Arrhythmia Ablation

  • Chapter
Lasers in Cardiovascular Interventions

Abstract

Cardiovascular laser application is a new procedure in the diagnosis and treatment of diseases based on a key technology the Laser. In the past three decades we have performed numerous in-vitro tests and in-vivo studies by using the laser method. Aim was to validate limitations and practicability of this new technique for a useful application in the heart chambers and vessels.

Experimental tests with various laser power sources, mainly the 1064 nm Nd:YAG laser in the continuous wave (cw) mode of radiation, and various energy transmission systems, mainly with an open irrigated electrode-laser mapping and ablation (ELMA) catheter, were performed on bovine myocardium, in the beating heart of rabbits, porks, and in a total of 153 anesthetized dogs, mainly beagles. Tests were performed with the aim to elucidate during laser catheter applications the optimal energy settings, catheter irrigation flow, the influence of catheter orientation and pressure on the targeted endocardial or epicardial surfaces, and the controllability of laser lesion formation. Subsequently, a first clinical multicenter study trial of arrhythmia ablation in patients with a follow-up of 5–8 years was added by using the ELMA catheter.

As compared to other methods, including radiofrequency and cryoablation, the laser produces larger lesions, faster, and in a more controllable manner. The laser is safer and more effective with a lower burden to patients. The laser method has the potential for becoming an all pervasive procedure for cardiovascular diseases including arrhythmia ablation, the Chagas disease, the hypertrophic obstructive cardiomyopathy (HOCM)-ablation, renal denervation, and side selective transseptal puncture procedure. We conclude that this is the first large prospective validation that the laser can supersede all the devices with limitations in cardiovascular applications at present in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber H, Ischinger T. Cardiovascular application of Nd:YAG laser. Lasers Med Surg. 1988;4:54–8.

    Google Scholar 

  2. Boulnois J-L. Photophysical processes in recent medical laser developments: a review. J Lasers Med Sci. 1986;1:47–66.

    Article  Google Scholar 

  3. Weber H, Heinze A, Enders S, Hauptmann G, Ruprecht L, Unsöld E. In vivo temperature measurement during transcatheter endomyocardial Nd:YAG laser radiation. Lasers Med Sci. 1997;12:352–6.

    Article  CAS  PubMed  Google Scholar 

  4. Gralinski MR. The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol. 2003;31:11–6.

    CAS  PubMed  Google Scholar 

  5. Eckardt L, Meissner A, Kirchhof P, Weber T, Borggrefe M, Breithardt G, Van Aken H, Haverkamp W. In vivo recording of monophasic action potentials in awake dogs – new applications for experimental electrophysiology. Basic Res Cardiol. 2001;96:169–74.

    Article  CAS  PubMed  Google Scholar 

  6. Weber H, Sagerer-Gerhardt M. Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model. Europace. 2013. 2014;16:142.48. doi:10.1093/Europace/eut150.

  7. Weber H, Heinze A. Reversible laser mapping: experimental and clinical results. PACE. 2001;24:S68 (abstr 269).

    Article  Google Scholar 

  8. Weber H, Heinze A. Hot versus cool ablation. J Cardiovasc Electrophysiol. 2002;13:440–1.

    Google Scholar 

  9. Weber H, Enders S, Heinze A, Ruprecht L, Unsoeld E. Transcatheter mapping guided laser irradiation of the AV-conduction system. PACE. 1993;16:1109 (Part II).

    Google Scholar 

  10. Weber H, Heinze A, Enders S, Ruprecht L, Unsoeld E. Modification of sinus node functions by endocardial catheter directed laser irradiation in dogs. PACE. 1994;17:797 (Part II).

    Google Scholar 

  11. Weber H, Heinze A, Enders S, Ruprecht L, Unsoeld E. Modification of atrioventricular node transmission properties by transcatheter endocardial lasser irradiation in dogs. PACE. 1994;17:832 (Part II).

    Google Scholar 

  12. Helmut P. Weber, Sagerer-Gerhardt M. Monitoring of laser effects on the conductions system by using an open-irrigated electrode-laser mapping and ablation catheter: laser catheter mapping. Europace. 2015;17:664–70.

    Google Scholar 

  13. Weber H. Hot versus cool ablation. J Cardiovasc Electrophysiol. 2002;13:440–441.

    Google Scholar 

  14. Stevenson WG, Cooper J, Sapp J. Optimizing RF output for cooled RF ablation. J Cardiovasc Electrophysiol. 2004;15:24–7.

    Article  Google Scholar 

  15. Nakagawa H, Wittkampf FH, Yamanashi WS, Pitha JV, Imia S, Campbell B, Arruda M, Lazzara R, Jackman WM. Inverse relationship between electrode size and lesion size during RF ablation with active electrode cooling. Circulation. 1998;98:458–65.

    Article  CAS  PubMed  Google Scholar 

  16. Matsudaira K, Nakagawa H, Wittkampf FH, Yamanashi W, Imia S, Pitha JV, Lazzara R, Jackman WM. High incidence of thrombus formation without impedance rise during RF ablation using electrode temperature control. PACE. 2003;26:1227–37.

    Article  PubMed  Google Scholar 

  17. Scavee C, Jais P, Hsu LF, Sanders P, Hocini M, Weerasooriya R, Macle L, Raybaud F, Clementy J, Haissaguerre M. Prospective randomized comparison of irrigated-tip and large-tip catheter ablation of cavotricuspid istmus-dependent atrial flutter. Eur Heart J. 2004;25:963–9.

    Article  PubMed  Google Scholar 

  18. Shah DC, Lambert H, Nakagawa H, Langenkamp A, Aeby N, Leo G. Area under real time contact force curve (force time integral) predicts radiofrequency lesion size in an in-vitro contractile model simulating beating heart. J Cardiovasc Electrophysiol. 2010;21:1038–43.

    Article  PubMed  Google Scholar 

  19. Thiagalingam A, D´Avila A, Foley L, et al. Importance of catheter contact forceduring irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force sensing catheter. J Cardiovasc Electrophysiol. 2010;21:806–11.

    PubMed  Google Scholar 

  20. Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:32–8.

    Article  PubMed  Google Scholar 

  21. Kuck KH, Reddy VY, Schmidt B, et al. A novel radiofrequency ablation catheter using contact force sensing: TOCCATA Study. Heart Rhythm. 2012;9:18–23.

    Article  PubMed  Google Scholar 

  22. Weber H, Enders S, Coppenrath C, Murray AB, Schad H, Mendler N. Effects of Nd:YAG laser coagulation of myocardium on coronary vessels. Lasers Surg Med. 1990;10:133–9.

    Article  CAS  PubMed  Google Scholar 

  23. Weber H, Heinze A, Enders S, Ruprecht L, Unseold E. Laser versus radiofrequency catheter ablation of ventricular myocardium: a comparative test. Cardiology. 1997;88:346–52.

    Article  CAS  PubMed  Google Scholar 

  24. Haines D. Biophysics of ablation: application to technology. J Cardiovasc Electrophysiol. 2004;15:S2–11.

    Google Scholar 

  25. Weber HP, Heinze A, Enders S, Ruprecht L, Unsöld E. Laser catheter coagulation of normal and scarred ventricular myocardium in dogs. Lasers Surg Med. 1998;14:109–19.

    Article  Google Scholar 

  26. Splinter R, Svenson RH, Littman L, et al. Significance of optical characterization of Myocardium in laser ablation of ventricular Tachycardia. In: Splinter R, editor. Dissertation, University of Amsterdam; 1990. p. 77–92.

    Google Scholar 

  27. Weber H, Schmitz L. Catheter technique for closed-chest ablation of an accessory atrioventricular pathway. N Engl J Med. 1983;308:653–4.

    CAS  PubMed  Google Scholar 

  28. Weber H, Heinze A. Laser catheter ablation of atrial flutter and of atrio-ventricular nodal reentrant tachycardia in a single session. Eur Heart J. 1994;15:1147–9.

    CAS  PubMed  Google Scholar 

  29. Ischinger T, Coppenrath C, Weber H, Enders S, Ruprecht L, Unsoeld E, et al. Laser balloon angioplasty: technical realization and vascular tissue effects of a modified concept. Lasers Surg Med. 1990;10:112–23.

    Article  CAS  PubMed  Google Scholar 

  30. Kimura T, Takatszki S, Miyoshi SH, Fukumoto K, Takahashi M, Ogawa E, et al. Nonthermal cardiac catheter ablation using photodynamic therapy. Circ Arrhythm Electrophsiol. 2013;6:1025–31.

    Article  CAS  Google Scholar 

  31. Weber H, Sagerer-Gerhardt M. Side-selective atrial transseptal laser puncture. Innov CRM. 2013;4:1481–5.

    Google Scholar 

  32. Weber H, Kaltenbrunner W, Heinze A, Steinbach K. Laser catheter coagulation of atrial myocardium for ablation of atrioventricular nodal reentrant tachycardia. Eur Heart J. 1997;18:487–95.

    Article  CAS  PubMed  Google Scholar 

  33. Price A, Leshen Z, Hansen J, Singh I, Arora P, Koblish J, Avitall B. Novel ablation catheter technology that improves mapping resolution and monitoring of lesion maturation. Innov CRM. 2012;3:599–609.

    Google Scholar 

  34. Migliore F, Zorzi A, Silvano M, Bevilacqua M, Leoni L, Perazzolo Marra M, Elmaghavri M, Brugnaro L, Dal Lin C, Bauce B, Rigato I, Tarantini G, Basso C, Buja J, Thiene G, Iliceto S, Corrado D. Prognostic value of endocardial voltage mapping in patients with arrhythmogenic ventricular cardiomyopathy/dysplasia. Circ Arrhythm Electrophysiol. 2013;6:167–76.

    Article  PubMed  Google Scholar 

  35. Weber H, Sagerer-Gerhardt M. Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model. Europace. 2014;16:142–8.

    Article  PubMed  Google Scholar 

  36. Ranjan R, Kholmovski EG, Blauer J, Vijayakumar S, Volland NA, Salama ME, Parker DL, MacLeod R, Marrouche NF. Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythm Electrophysiol. 2012;5:1130–5.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish NE, Blauer JJE, Rao SN, DiBella EVR, Segerson NM, Daccarett M, Windfelder J, McGann DHJ, Parker D, McLeod RS, Marrouche NF. Detection and quantification of left atrial structural remodeling with delayed enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758–67.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Akoum N, Daccarett M, McGann CH, Segersen N, Verara G, Kuppahally S, Badger T, Burgon N, Haslam T, Kholmovski E, McLeod R, Marrouch N. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol. 2011;22:16–22.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. Expert consensus statement of catheter and surgical ablation of atrial fibrillation. Europace. 2012;14:528–606.

    Article  PubMed  Google Scholar 

  40. Kawata H, Schricker A, Lalani GG, Baykauer T, Krummen DE, Narayan SM. Focal impulse and rotor modulation for paroxysmal atrial fibrillation. Innov CRM. 2013;4:1101–7.

    Google Scholar 

  41. Dukkipati SR, Kuck KH, Neuzil P, Woollett J, Kautzner J, McElderry HT, Schmidt B, Gerstenfeld EP, Doshi AK, Horton R, Metzner A, d’Avila A, Ruskin JM, Natale A, Reddy VY. Pulmonary vein isolation using a visually guided laser balloon catheter: the first 200-patient multicenter clinical experience. Circ Arrhythm Electrophysiol. 2013;6:467–72.

    Article  PubMed  Google Scholar 

  42. Zhuang S, Weber H, Heinze A, Wanner G, Weiss L. D-dimer serum level after laser catheter ablation of tachyarrhythmias. PACE. 1999;22:A94 (P196).

    Google Scholar 

  43. Furushima H, Chinushi M, Iijima K, Sanada A, Izumi D, Hosaka Y, Aizawa Y. Ventricular tachyarrhythmia associated with hypertrophic cardiomyopathy: incidence, prognosis, and relation to type of hypertrophy. J Cardiovasc Electrophysiol. 2010;21:991–9.

    Article  PubMed  Google Scholar 

  44. Muratore CA, Batista Sa LA, Chiale PA, Eloy R, Tentori MCH, Escudero J, Cavalcanti Lima AM, Medina LE, Garillo R, Maloney J. Implantable cardioverter defibrillators and Chagas’ disease: results of the ICD Registry Latin America. Europace. 2009;11:164–8.

    Article  PubMed  Google Scholar 

  45. Hadid C, Gallino S, Di Toro D, Celano L, Lopez C, Duce E, Labadet C. Multiple morphologies of ventricular tachycardia assessed by implantable cardioverter-defibrillator electrograms in a patient with Chagas disease, successfully treated with catheter ablation: modern problems, old solutions. Europace. 2012;14:1660.

    Article  PubMed  Google Scholar 

  46. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.

    Article  PubMed  Google Scholar 

  47. Krum H, Barman N, Schlaich M, Sobotka P, Esler M, Mahfoud F, Böhm M, Dunlap M. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.

    Article  CAS  Google Scholar 

  48. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Boehm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomized controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  49. Vonend O, Antoch G, Rump LC, Blondin D. Secondary rise in blood pressure after renal denervation. Lancet. 2012;380:778.

    Article  PubMed  Google Scholar 

  50. Kaltenbach B, Id D, Franke JC, Sievert H, Hennersdorf M, Maier J, Bertog SC. Renal artery stenosis after renal sympathetic denervation. J Am Coll Cardiol. 2012;60:2694–5.

    Article  PubMed  Google Scholar 

  51. Mahfoud F, Ukena C, Cremers B, Kindermann I, Kindermann M, Sobotka P, Schlaich M, Boehm M. Renal denervation improves glucose metabolism in patients with resistant hypertension. Circulation. 2011;123:1940–6.

    Article  CAS  PubMed  Google Scholar 

  52. Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, Michalowska I, Kabat M, Warchol E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz AE. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58:559–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut P. Weber MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Weber, H.P., Sagerer-Gerhardt, M. (2015). Laser-Based Approach to Cardiac Mapping and Arrhythmia Ablation. In: Topaz, O. (eds) Lasers in Cardiovascular Interventions. Springer, London. https://doi.org/10.1007/978-1-4471-5220-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5220-0_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5219-4

  • Online ISBN: 978-1-4471-5220-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics