Skip to main content

From Laser Physics to Clinical Utilization: Design and Ablative Properties of Cardiovascular Laser Catheters

  • Chapter
Lasers in Cardiovascular Interventions

Abstract

Although the notion of excimer laser atherectomy (ELA) first appeared in the early 1980’s, almost 10 years passed before the technique became commercially available. As with many new technologies, improvements in the clinical application of ELA relied on the interplay among several technical disciplines. Understanding the biophysics of laser-tissue interaction, designing fiberoptic catheters that leveraged that understanding, and developing clinical technique required to use those catheters successfully, were required to advance the practice of ELA. That interplay created a relentless drive for improvement as challenges and disappointments were addressed with new understanding and updated catheter designs.

This chapter attempts to unravel the historically complex interplay into a rational sequence of concepts. A short review of laser biophysics leads naturally to the clinical technique required to apply the technology. In turn, the clinical implication of tissue photoablation leads to advancements in catheter designs, which will be covered in detail. Lastly, the possibilities for applying optimized laser catheters to a wider variety of clinical situations will be discussed. More than three decades since excimer laser coronary atherectomy appeared, we find that the hard-won lessons from the past still guide us toward optimization of debulking with ELA and improved patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grundfest WS, Litvack F, Forrester J. Laser angioplasty. Coron Artery Dis. 1990;1:99–104.

    Article  Google Scholar 

  2. Haase KK, Baumbach A, Spyridopoulos I, Oberhoff M, Karsch K. Initial clinical experience with a modified excimer laser for coronary angioplasty. Lasers Med Sci. 1994;9:7–15.

    Article  Google Scholar 

  3. Isner JM, Clarke RH. Mechanisms. In: Isner J, Clarke R, editors. Cardiovasc laser therapy. New York: Raven Press Ltd; 1989. p. 89–104.

    Google Scholar 

  4. Izatt JA, Albigli D, Itzkan I, Feld MS. Pulsed laser ablation of calcified tissue: physical mechanisms and fundamental parameters. Proc SPIE. 1990;1202:133–40.

    Article  Google Scholar 

  5. Golobic RA. Laser selection criteria for coronary laser angioplasty. In: Ginsburg R, Geschwind HJ, editors. Laser angioplasty. 2nd ed. Mount Kisco: Futura Publishing Company Inc; 1992. p. 205–15.

    Google Scholar 

  6. Taylor K, Reiser C. Large eccentric laser angioplasty catheter. Proc SPIE. 1997;2970:35–40.

    Article  Google Scholar 

  7. Taylor KD, Papaioannou T, Harlan K, Sorokoumov O, Shehada R, Rentrop P. Small excimer laser angioplasty catheter for fibrocalcific tissue penetration. (abstr). Lasers Surg Med. 2000;26:10.

    Google Scholar 

  8. Gijsber GHM, Sprangers RLH, van Gemert MJC. Excimer laser coronary angioplasty: laser-tissue interactions at 308 nm. In: Ginsburg R, Geschwind HJ, editors. Laser angioplasty. 2nd ed. Mount Kisco: Futura Publishing Company Inc; 1992. p. 217–41.

    Google Scholar 

  9. Jacques SL. Role of tissue optics and pulse duration on tissue effects during high- power laser irradiation. Appl Optics. 1993;32:2447–54.

    Article  CAS  Google Scholar 

  10. Anderson RR, Parrish JA. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981;1:263–76.

    Article  CAS  PubMed  Google Scholar 

  11. Abil’ siitov GA, Belyaev AA, Bragin MA, et al. Investigation of photoablation of atherosclerotic plaques by laser radiation. Soy J Quantum Electron. 1985; 15:13 14–15.

    Google Scholar 

  12. Litvack F, Grundfest WS, Goldenberg T, Laudenslager J, Pacala T, Segalowitz J, Forrester JS. Pulsed laser angioplasty: wavelength power and energy dependencies relevant to clinical application. Lasers Surg Med. 1988;8:60–5.

    Article  CAS  PubMed  Google Scholar 

  13. Oraevsky AA, Jacques SL, Pettit GH, Saidi LS, Tittel FK, Henry PD. XeC1 laser ablation of atherosclerotic aorta: optical properties and energy pathways. Lasers Surg Med. 1992;12:585–97.

    Article  CAS  PubMed  Google Scholar 

  14. Oraevsky AA, Jacques SL, Pettit GH, Tittel FK, Henry PD. XeCl laser ablation of atherosclerotic aorta: luminescence spectroscopy of ablation products. Lasers Surg Med. 1993;13:168–78.

    Article  CAS  PubMed  Google Scholar 

  15. Gijsbers GHM, Sprangers RLH, van den Broecke DG, van Wieringen N, Brugmans MJP, van Gemert MJC. Temperature increase during in vitro 308 nm excimer laser ablation of porcine aortic tissue. Proc SPIE. 1991;1425:80–7.

    Google Scholar 

  16. van Leeuwen TG, van Erven L, Meertens JH, Motamedi M, Post MJ, Borst C. Origin of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig. JACC. 1992;19:1610–8.

    Article  PubMed  Google Scholar 

  17. van Leeuwen TG, Meertens JH, Velema E, Post MJ, Borst C. Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit. Circulation. 1993;87:1258–63.

    Article  PubMed  Google Scholar 

  18. Clarke RH, Isner JM, Donaldson RF, Jones G. Gas chromatographic-light microscopic correlative analysis of excimer laser photoablation of cardiovascular tissues: evidence for a thermal mechanism. Circ Res. 1987;60:429–37.

    Article  CAS  PubMed  Google Scholar 

  19. Furzikov NP, Karu TI, Letokhov VS, Beljaev AA, Ragimov SE. Relative efficiency and products of atherosclerotic plaque destruction by pulsed laser radiation. Lasers Life Sci. 1987;1:265–74.

    Google Scholar 

  20. Vogel A, Engelhardt R, Behule U, Parlitz U. Minimization of cavitation effects in pulse laser ablation illustrated on laser angioplasty. Appl Phys B. 1996;62:173–82.

    Article  Google Scholar 

  21. Esenaliev RO, Oraevsky AA, Letokhov VS, Karabutov AA, Malinsky TV. Studies of acoustical and shock wave in pulsed laser ablation of biotissue. Lasers Surg Med. 1993;13:470.

    Article  CAS  PubMed  Google Scholar 

  22. Albagli D. Fundamental mechanisms of pulsed laser ablation of biological tissue, PhD thesis. Cambridge: Massachusetts Institute of Technology; 1994.

    Google Scholar 

  23. Verdaasdonk RM, Vos P, van Leeuwen TG, Borst C, van Swol CF. Contribution of photothermal and photomechanical effects during tissue ablation by the XeCl-excimer laser. Proc SPIE. 1994;2134A:333–41.

    Google Scholar 

  24. Lippincott RA, Bellendir J, Taylor KD, Reiser C. Optimally spaced fiber catheter for excimer laser coronary angioplasty (ELCA). Anderson RR, Bartels KE, Bass LS, Bornhop DJ, Garrett CG, Gregory KW, Kollias N, Lui H, Malek RS, Perlmutter AP, Reidenbach H-D, Reinisch L, Robinson DS, Tate LP, Trowers EA (eds.). Proc. SPIE 3590, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX. San Jose, CA. (June 22, 1999).

    Google Scholar 

  25. Taylor KD, Reiser C. Next generation catheters for excimer laser angioplasty. Lasers Med Sci. 2001;16:133–40.

    Article  CAS  PubMed  Google Scholar 

  26. Hamburger JN. New aspects of excimer laser coronary angioplasty: physical aspects and clinical results. Doctoral thesis. Rotterdam: Erasmus University. 1999.

    Google Scholar 

  27. Pettit GH, Saidi IS, Tittel FK, et al. Thrombolysis by excimer laser photoablation. Lasers Life Sci. 1993;5(3):185–97.

    Google Scholar 

  28. Papaioannou T, Sorocoumov O, Taylor K, Grundfest W. Excimer laser assisted thrombolysis: the effect of fluence, repetition rate and catheter size. In: Bartels KE, et al., editors. Lasers in surgery: advanced characterization, therapeutics, and systems XII. Proceedings of SPIE 2002; vol. 4609. p. 413–8.

    Google Scholar 

  29. Papaioannou T, Levinsman J, Sorocoumov O, Taylor K, Pitzer S, Grundfest WS. Particulate debris analysis during excimer laser thrombolysis: an in–vitro study. In: Bartels et al., editors. Lasers in surgery: advanced characterization, therapeutics, and systems XII. Proceedings of SPIE vol. 4609. 2002. p. 404–12.

    Google Scholar 

  30. Baumbach A, Haase KK, Rose C, Oberhoff M, Hanke H, Karsch KR. Formation of pressure waves during in vitro excimer laser irradiation in whole blood and the effect of dilution with contrast media and saline. Lasers Surg Med. 1994;14:3–6.

    Article  CAS  PubMed  Google Scholar 

  31. Deckelbaum LI, Natarajan MK, Bittl JA, et al. Effect of intracoronary saline infusion on dissection during excimer laser angioplasty: a randomized trial. JACC. 1995;26:1264–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tcheng JE, Phillips HR, Wells LD, Golobic RA, Power JA, Deckelbaum LI. A new technique for reducing pressure pulse phenomena during coronary excimer laser angioplasty. JACC. 1993;21:938–74.

    Google Scholar 

  33. van Leeuwen TG, Borst C. Fundamental laser-tissue interactions. Semin Intervent Cardiol. 1996;1:100–20.

    Google Scholar 

  34. Sauerbrey R, Pettit GH. Theory for the etching of organic materials by ultraviolet laser pulses. Appl Phys Lett. 1989;55:421–3.

    Article  CAS  Google Scholar 

  35. Bittl JA. Clinical results with excimer laser coronary angioplasty. Semin Intervent Cardiol. 1996;1:53–78.

    Google Scholar 

  36. Klein LW, Litvack F, Holmes D, et al. Six month outcome and determinants of adverse clinical events after successful excimer laser coronary angioplasty. J Invas Cardiol. 1995;7:191–9.

    CAS  Google Scholar 

  37. Litvack F, Eigler N, Margolis J, et al. Percutaneous excimer laser coronary angioplasty: results in the first consecutive 3,000 patients. JACC. 1994;23:323–9.

    Article  CAS  PubMed  Google Scholar 

  38. Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer laser, rotational atherectomy, and balloon angioplasty comparison (ERBAC) study. Circulation. 1997;96(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sanborn TA. Laser angioplasty: historical perspective. Semin Intervent Cardiol. 1996;1:161–74.

    Google Scholar 

  40. Estella P, Ryan TJ, Landzberg JS, Bittl JA. Eximer laser-assisted coronary angioplasty for lesions containing thrombus. JACC. 1993;21:1550–6.

    Article  CAS  PubMed  Google Scholar 

  41. van Leeuwen TG, Velema E, Pasterkamp G, Post MJ, Borst C. Saline flush during excimer laser angioplasty: short and long term effects in the rabbit femoral artery. Lasers Surg Med. 1998;23:128–40.

    Article  PubMed  Google Scholar 

  42. Ebersole DO. Clinical applications for the excimer laser. Cardiovasc Rev Rep. 1999;10:6.

    Google Scholar 

  43. Margolis JR. Excimer laser vs. balloon angioplasty: (AMRO study) – what is the relevance? Eur Heart J. 1996;17:807–8.

    Article  CAS  PubMed  Google Scholar 

  44. Mehran R, Mintz GS, Satler LF, Pichard AD, Kent KM, Bucher TA, Popma JJ, Leon MB. Treatment of in-stent restenosis with excimer laser coronary angioplasty. Circulation. 1997;96:2183–8.

    Article  CAS  PubMed  Google Scholar 

  45. Oberhoff M, Baumbach A, Herdeg C, et al. Smooth excimer laser coronary angioplasty (SELCA) and conventional excimer laser angioplasty: comparison of vascular injury and smooth muscle cell proliferation. Lasers Med Sci. 1997;12:328–35.

    Article  CAS  PubMed  Google Scholar 

  46. Gijsbers GHM, Hamburger JN, Serruys PW. Homogeneous light distribution to reduce vessel trauma during excimer laser angioplasty. Semin Intervent Cardiol. 1996;1:143–8.

    CAS  Google Scholar 

  47. van den Broecke DG, Hamburger JN, Gijsbers GHM, Serruys PW. The influence of CO2 flush on the quality of excimer laser tissue ablation. (abstract) Proc 1st Int Meet Intervent Cardiol. 1995;7(Suppl C):21.

    Google Scholar 

  48. Abela GS, Norman SL, Cohen DM, et al. Laser recanalization of occluded arteries in vivo and in vitro. Circulation. 1985;75:403–11.

    Article  Google Scholar 

  49. Isner JM, Donaldson RF, Funai JT, et al. Factors contributing to perforations resulting from laser coronary angioplasty: observations in an intact human postmortem preparation of intraoperative laser coronary angioplasty. Coron Artery Surg. 1985;72 Suppl 2:191–9.

    Google Scholar 

  50. Bittl JA, Brinker JA, Sandborn TA, Isner JM, Tcheng JE. The changing profile of patient selection, procedural techniques, and outcomes in excimer laser coronary angioplasty. J Intervent Cardiol. 1995;8:653–60.

    Article  CAS  PubMed  Google Scholar 

  51. Taylor KD, Bellendir J, Hamersmark DJ. Fiber optic catheter with shortened guidewire lumen. United States of America Patent 5,456,680, 10 October 1995.

    Google Scholar 

  52. Grzesik U, Fabian H, Neu W, Hillrichs G. Reduction of photodegradation in optical fibers for excimer laser applications. SPIE vol 1649 Optical Fibers in Medicine VII. 1992. p. 80–90.

    Google Scholar 

  53. Fabian H, Grzesik U, Hillrichs G, Neu W. Optical fibers with enhanced performance for excimer laser power transmission at 308 nm. SPIE vol 1893 Optical Fibers in Medicine VIII. 1993. p. 24–32.

    Google Scholar 

  54. Wardle JL, Goldenberg T. Optical catheter with stranded fibers. United States of America Patent 5,415,653, 16 May 1995.

    Google Scholar 

  55. Taylor RS, Higginson AJ, Leopold KE. Dependence of the XeCl laser cut rate of plague on the degree of calcification, laser fluence, and optical pulse duration. Lasers Surg Med. 1990;10:414–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bilodeau L, Fretz EB, Taeymans Y, Taylor K, et al. Novel use of a high energy excimer laser catheter for calcified and complex coronary artery lesions. Cath Cardio Interv. 2004;62:155–61.

    Article  Google Scholar 

  57. Dahm JB, Kuon E, Hummel A, Möx B, Staudt A, Felix SB. Area ablation: a new lasing concept provides significantly enhanced acute and long-term results for treatment of in-stent restenosis. Lasers Surg Med. 2002;31(1):1–8.

    Article  PubMed  Google Scholar 

  58. Hebert CJ, Bowe WA, Wood TJ, Tedder S. Apparatus and methods for directional delivery of laser energy US Patent 7,572,254, August 11,2009

    Google Scholar 

  59. Dave RM, Patlola R, Kollmeyer K, et al. Excimer laser recanalization of femoropopliteal lesions and 1-year patency. J Endovasc Ther. 2009;16:665–75.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin D. Taylor BS or Christopher Reiser BA, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Taylor, K.D., Reiser, C. (2015). From Laser Physics to Clinical Utilization: Design and Ablative Properties of Cardiovascular Laser Catheters. In: Topaz, O. (eds) Lasers in Cardiovascular Interventions. Springer, London. https://doi.org/10.1007/978-1-4471-5220-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5220-0_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5219-4

  • Online ISBN: 978-1-4471-5220-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics