Skip to main content

Modular Multi-finger Haptic Device: Mechanical Design, Controller and Applications

  • Chapter
Multi-finger Haptic Interaction

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

In this chapter, a scalable, multi-finger haptic device based on modular configuration is presented. The mechanical design is based on a modular configuration with a redundant degree of freedom in which each module represents one finger. Mechanical configuration has been optimized to provide a device, which is as transparent as possible to the user. A general description of the control requirements and the implementation to control these types of devices are presented. Applications of modular multi-finger haptic devices include advanced virtual manipulation and simulators for training precise manual tasks. In this chapter, applications for precise manipulation including haptic and visual feedback are presented. Three scenarios have been developed in order to analyze human factors, train manual manipulations and test the performance of the system: (i) a simulator to train physiotherapists to do rehabilitation procedures, (ii) manipulation of fragile objects, and (iii) collaborative manipulation to lift an object between two users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salisbury, J. K., & Srinivasan, M. A. (1997). Phantom based haptic interaction with virtual objects. IEEE Computer Graphics and Applications, 17(5), 6–10.

    Article  Google Scholar 

  2. Škorc, G., Zapušek, S., Čas, J., & Šafarič R. (2010). Virtual user interface for the remote control of a nanorobotic cell using a haptic-device. Strojniški Vestnik—Journal of Mechanical Engineering, 56(7–8), 423–435.

    Google Scholar 

  3. Peer, A., & Buss, M. (2008). A new admittance-type haptic interface for bimanual manipulations. IEEE/ASME Transactions on Mechatronics, 13(4), 416–428.

    Article  Google Scholar 

  4. Waldron, K. J., & Tollon, K. (2003). Mechanical characterization of the immersion corp. haptic, bimanual, surgical simulation interface. In 8th international symposium on experimental robotics (Vol. 5, pp. 106–112).

    Google Scholar 

  5. Okamura, A. M. (2004). Methods for haptic feedback in teleoperated robot-assisted surgery. Industrial Robot: An International Journal, 31(6), 499–508.

    Article  Google Scholar 

  6. McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J. A., Lilavois, M., & Kuchenbecker, K. J. (2011). Tool contact acceleration feedback for telerobotic surgery. IEEE Transactions on Haptics, 4(3), 210–220.

    Article  Google Scholar 

  7. Ferre, M., Galiana, M., Wirz, R., & Tuttle, N. (2011). Haptic device for capturing and simulating hand manipulation rehabilitation. IEEE/ASME Transactions on Mechatronics, 16(5), 808–815.

    Article  Google Scholar 

  8. Strolz, M., Groten, R., Peer, A., & Buss, M. (2011). Development and evaluation of a device for the haptic rendering of rotatory car doors. IEEE Transactions on Industrial Electronics, 58(8), 3133–3140.

    Article  Google Scholar 

  9. Coles, T. R., Meglan, D., & John, N. W. (2011). The role of haptics in medical training simulators: a survey of the state of the art. IEEE Transactions on Haptics, 4(1), 51–66.

    Article  Google Scholar 

  10. Robotiq Adaptive Gripper—ROBOTIQ flexible robot grippers designer and manufacturer. http://robotiq.com/en/products/adaptive-robot-gripper.

  11. Raju, G. J., Verghese, G. C., & Sheridan, T. B. (1989). Design issues in 2-port network models of bilateral remote teleoperation. In IEEE international conference on robotics and automation (pp. 1317–1321).

    Google Scholar 

  12. Yokokohji, Y., & Yoshikawa, T. (1992). Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment. IEEE Transactions on Robotics and Automation, 10(5), 605–620. doi:10.1109/70.326566.

    Article  Google Scholar 

  13. Lawrence, D. A. (1993). Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation, 9(5), 624–637. doi:10.1109/70.258054.

    Article  MathSciNet  Google Scholar 

  14. Lee, S. S., & Lee, J. M. (2003). Design of a general purpose 6-DOF haptic interface. Mechatronics, 13, 697–722.

    Article  Google Scholar 

  15. O’Malley, M., & Goldfarb, M. (2002). The effect of force saturation on the haptic perception of detail. IEEE/ASME Transactions on Mechatronics, 7(3), 280–288.

    Article  Google Scholar 

  16. López, . J., Breñosa, J., Galiana, I., Ferre, M., Giménez, A., & Barrio, J. (2012). Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation. Strojniški Vestnik—Journal of Mechanical Engineering, 58(7–8), 431–443.

    Article  Google Scholar 

  17. Giachritsis, C. D., Ferre, M., Barrio, J., & Wing, A. (2011). Unimanual and bimanual weight perception of virtual objects with a new multi-finger haptic interface. Brain Research Bulletin, 85(5), 271–276.

    Article  Google Scholar 

  18. Cervantes-Sánchez, J. J., Hernández-Rodríguez, J. C., & Rendón-Sánchez, J. G. (2000). On the workspace, assembly configurations and singularity curves of the RRRRR-type planar manipulator. Mechanism and Machine Theory, 35, 1117–1139.

    Article  MATH  Google Scholar 

  19. Garcia-Robledo, P., Ortego, J., Ferre, M., Barrio, J., & Sanchez-Uran, M. A. (2011). Segmentation of bimanual virtual object manipulation tasks using multifinger haptic interfaces. IEEE Transactions on Instrumentation and Measurement, 60(1), 69–80.

    Article  Google Scholar 

  20. García-Robledo, P., Ortego, J., Barrio, J., Galiana, I., Ferre, M., & Aracil, R. (2009). Multifinger haptic interface for bimanual manipulation of virtual objects interaction between two hands and virtual objects with MasterFinger. In IEEE international workshop on haptic audio visual environments and games, Lecco (pp. 30–35).

    Chapter  Google Scholar 

  21. Liu, X. J., Wang, J., & Pritschow, G. (2006). Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms. Mechanism and Machine Theory, 41, 119–144.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cobos, S., Ferre, M., Sánchez-Urán, M. A., Ortego, J., & Aracil, R. (2010). Human hand descriptions and gesture recognition for object manipulation. Computer Methods in Biomechanics and Biomedical Engineering, 13(3), 305–317.

    Article  Google Scholar 

  23. Cutkosky, M. R. (1989). On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269–279.

    Article  MathSciNet  Google Scholar 

  24. Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., & Koketsu, K. (2011). Five-fingered haptic interface robot: HIRO III. IEEE Transaction on Haptics, 4(1).

    Google Scholar 

  25. Hannaford, B., & Okamura, M. (2008). Haptics. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (p. 720). Berlin: Springer. ISBN: 9789-3-540-23957-4. Chap. 20.

    Google Scholar 

  26. Cerrada, P., Breñosa, J., Galiana, I., López, J., Ferre, M., Giménez, A., & Aracil, R. (2011). Optimal mechanical design of modular haptic devices. In Advanced intelligent mechatronics, IEEE/ASME international conference, AIM2011, Budapest, Hungary.

    Google Scholar 

  27. Garcia-Robledo, P., Ortego, J., Barrio, J., Galiana, I., Ferre, M., & Aracil, R. (2009). Multifinger haptic interface for bimanual manipulation of virtual objects. In IEEE international workshop on haptic audio visual environments and games. HAVE.

    Google Scholar 

  28. Ferre, M., Galiana, I., & Aracil, R. (2011). Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors. Sensors, 11, 11495–11509.

    Article  Google Scholar 

  29. Galiana, I., Bielza, M., & Ferre, M. (2010). Estimation of normal and tangential manipulation forces by using contact force sensors. In Lecture notes in computer science springer, eurohaptics 2010, Amsterdam, The Netherlands.

    Google Scholar 

  30. Monroy, M., Ferre, M., Barrio, J., Eslava, V., & Galiana, I. (2009). Sensorized thimble for haptic applications. In IEEE international conference on mechatronics 2009, Málaga, Spain.

    Google Scholar 

  31. Wirz R, ., Marin, R., Ferre, M., Barrio, J., Claver, J. M., & Ortego, J. (2009). Bidirectional transport protocol for teleoperated robots. IEEE Transactions on Industrial Electronics, 56(9), 3772–3781.

    Article  Google Scholar 

  32. National Instruments. Available online on October 2012: http://www.ni.com/pxi/.

  33. Melder, N., Harwin, W., & Sharkey, P. (2003). Translation and rotation of multi-point contacted virtual objects. In Proceedings of the WorldHaptics conference (pp. 218–277).

    Google Scholar 

  34. Nourian, S., Shen, X., & Georganas, N. D. (2006). XPHEVE: an extensible physics engine for virtual environments. In Canadian conference on electrical and computer engineering, CCECE’06, May 2006 (pp. 1546–1549).

    Chapter  Google Scholar 

  35. Tuttle, N., & Jacuinde, G. (2011). Design and construction of a novel low-cost device to provide feedback on manually applied forces. The Journal of Orthopaedic and Sports Physical Therapy, 41, 174–179.

    Google Scholar 

  36. Lee, M., Gal, J., & Herzog, W. (2000). Biomechanics of manual therapy. In Z. Dvir (Ed.), Clinical biomechanics (pp. 209–237). Philadelphia: Churchill Livingstone.

    Google Scholar 

  37. Tholey, G., & Desai, J. P. (2007). A general-purpose 7 DOF haptic device: applications toward robot-assisted surgery. IEEE/ASME Transactions on Mechatronics, 12(6), 662–669.

    Article  Google Scholar 

  38. Werner, D., Kozin, S. H., Brozovich, M., Porter, S. T., Junkin, D., & Seigler, S. (2003). The biomechanical properties of the finger metacarpophalangeal joints to varus and valgus stress. The Journal of Hand Surgery (American Volume), 28, 1044–1051.

    Article  Google Scholar 

  39. Samur, E., Wang, F., Spaelter, U., & Bleuler, H. (2007). Generic and systematic evaluation of haptic interfaces based on testbeds. In IEEE/RSJ international conference on intelligent robots and systems, IROS 2007, October 2007 (pp. 2113–2119).

    Chapter  Google Scholar 

  40. Fisher, R. (1970). Intraclass correlations and the analysis of variance. In Statistical methods for research workers (14th ed.). Edinburgh: Oliver and Boyd.

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Madrid Community in the framework of The IV PRICIT through the project TECHNOFUSION(P2009/ENE/1679), the TEMAR project under grant DPI2009-12283 from the Spanish Ministry of Science and Innovation (MICINN) and UPM under ‘Formación de Personal Investigador’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Galiana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Galiana, I., Barrio, J., Breñosa, J.M., Ferre, M. (2013). Modular Multi-finger Haptic Device: Mechanical Design, Controller and Applications. In: Galiana, I., Ferre, M. (eds) Multi-finger Haptic Interaction. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-5204-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5204-0_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5203-3

  • Online ISBN: 978-1-4471-5204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics