3D Interaction Techniques for Bimanual Haptics in Virtual Environments

  • Anthony Talvas
  • Maud Marchal
  • Gabriel Cirio
  • Anatole Lécuyer
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)

Abstract

Bimanual haptics is a specific kind of multi-finger interaction that focuses on the use of both hands simultaneously. Several haptic devices enable bimanual haptic interaction, but they are subject to a certain number of limitations for interacting with virtual environments (VEs), such as workspace size issues or manipulation difficulties, notably with single-point interfaces. Interaction techniques exist to overcome these limitations and allow users to perform specific two-handed tasks, such as the bimanual exploration of large VEs and grasping of virtual objects. This chapter presents an overview of the current limitations in bimanual haptics and the interaction techniques developed to overcome these. Novel techniques based on the Bubble technique are more specifically presented, with a user evaluation that assesses their efficiency. These include bimanual workspace extension techniques as well as techniques to improve the grasping of virtual objects with dual single-point interfaces.

Keywords

Fatigue Expense Metaphor 

Notes

Acknowledgement

This research is supported in part by ANR (project Mandarin—ANR-12-CORD-0011).

References

  1. 1.
    Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. Journal of Motor Behavior, 19(4), 486–517. Google Scholar
  2. 2.
    Waldron, K., & Tollon, K. (2003). Mechanical characterization of the immersion corp. haptic, bimanual, surgical simulator interface. In B. Siciliano & P. Dario (Eds.), Springer tracts in advanced robotics: Vol. 5. Experimental robotics VIII (pp. 106–112). Berlin: Springer. CrossRefGoogle Scholar
  3. 3.
    Loi-Wah, S., Van Meer, F., Bailly, Y., & Yeung, C. K. (2007). Design and development of a da Vinci surgical system simulator. In Proc. of international conference on mechatronics and automation (pp. 1050–1055). Google Scholar
  4. 4.
    Li, S., Frisoli, A., Avizzano, C. A., Ruffaldi, E., Lugo-Villeda, L. I., & Bergamasco, M. (2009). Bimanual haptic-desktop platform for upper-limb post-stroke rehabilitation: practical trials. In Proc. of IEEE international conference on robotics and biomimetics (pp. 480–485). Google Scholar
  5. 5.
    Hulin, T., Sagardia, M., Artigas, J., Schaetzle, S., Kremer, P., & Preusche, C. (2008). Human-scale bimanual haptic interface. In Proc. of 5th international conference on enactive interfaces (pp. 28–33). Google Scholar
  6. 6.
    Faeth, A., Oren, M., Sheller, J., Godinez, S., & Harding, C. (2008). Cutting, deforming and painting of 3d meshes in a two handed viso-haptic vr system. In Proc. of IEEE virtual reality (pp. 213–216). Google Scholar
  7. 7.
    Dominjon, L., Lécuyer, A., Burkhardt, J.-M., Andrade-Barroso, G., & Richir, S. (2005). The “bubble” technique: interacting with large virtual environments using haptic devices with limited workspace. In Proc. of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, WHC’05 (pp. 639–640). Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  8. 8.
    Ott, R., De Perrot, V., Thalmann, D., & Vexo, F. (2007). Mhaptic: a haptic manipulation library for generic virtual environments. In Proc. of international conference on cyberworlds, CW’07 (pp. 338–345). Los Alamitos: IEEE Computer Society. Google Scholar
  9. 9.
    Talvas, A., Marchal, M., Nicolas, C., Cirio, G., Emily, M., & Lécuyer, A. (2012). Novel interactive techniques for bimanual manipulation of 3d objects with two 3dof haptic interfaces. In Proc. of EuroHaptics (1) (pp. 552–563). Google Scholar
  10. 10.
    Dominjon, L., Perret, J., & Lécuyer, A. (2007). Novel devices and interaction techniques for human-scale haptics. The Visual Computer, 23(4), 257–266. CrossRefGoogle Scholar
  11. 11.
    de Pascale, M., Formaglio, A., & Prattichizzo, D. (2006). A mobile platform for haptic grasping in large environments. Virtual Reality, 10, 11–23. CrossRefGoogle Scholar
  12. 12.
    Peer, A., & Buss, M. (2008). A new admittance-type haptic interface for bimanual manipulations. IEEE/ASME Transactions on Mechatronics, 13(4), 416–428. CrossRefGoogle Scholar
  13. 13.
    Formaglio, A., Prattichizzo, D., Barbagli, F., & Giannitrapani, A. (2008). Dynamic performance of mobile haptic interfaces. IEEE Transactions on Robotics, 24(3), 559–575. CrossRefGoogle Scholar
  14. 14.
    Peer, A., Unterhinninghofen, U., & Buss, M. (2006). Tele-assembly in wide remote environments. In Proc. of 2nd international workshop on human-centered robotic systems. Google Scholar
  15. 15.
    Murayama, J., Bougrila, L., Luo, Y., Akahane, K., Hasegawa, S., Hirsbrunner, B., & Sato, M. (2004). Spidar g&g: a two-handed haptic interface for bimanual vr interaction. In Proc. of EuroHaptics (pp. 138–146). Google Scholar
  16. 16.
    Garcia-Robledo, P., Ortego, J., Barrio, J., Galiana, I., Ferre, M., & Aracil, R. (2009). Multifinger haptic interface for bimanual manipulation of virtual objects. In Proc. of IEEE international workshop on haptic audio-visual environments and games (pp. 30–35). CrossRefGoogle Scholar
  17. 17.
    Walairacht, S., Koike, Y., & Sato, M. (2000). String-based haptic interface device for multi-fingers. In Proc. of IEEE virtual reality. Google Scholar
  18. 18.
    Endo, T., Yoshikawa, T., & Kawasaki, H. (2010). Collision avoidance control for a multi-fingered bimanual haptic interface. In Proc. of international conference on haptics—generating and perceiving tangible sensations: part II, EuroHaptics’10 (pp. 251–256). Berlin: Springer. CrossRefGoogle Scholar
  19. 19.
    Barbagli, F., Salisbury, K., & Devengenzo, R. (2003). Enabling multi-finger, multi-hand virtualized grasping. In Proc. of IEEE international conference on robotics and automation (Vol. 1, pp. 809–815). Google Scholar
  20. 20.
    Barbagli, F., Frisoli, A., Salisbury, K., & Bergamasco, M. (2004). Simulating human fingers: a soft finger proxy model and algorithm. In Proc. of 12th international symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 9–17). CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Sensable Technologies. http://www.sensable.com/.
  23. 23.
    Conti, F., Barbagli, F., Balaniuk, R., Halg, M., Lu, C., Morris, D., Sentis, L., Warren, J., Khatib, O., & Salisbury, K. (2003). The CHAI libraries. In Proc. of eurohaptics (pp. 496–500). Google Scholar
  24. 24.
    SenseGraphics. http://www.h3dapi.org/.
  25. 25.
    de Pascale, M., & Prattichizzo, D. (2007). The haptik library: a component based architecture for uniform access to haptic devices. IEEE Robotics & Automation Magazine, 14(4), 64–74. CrossRefGoogle Scholar
  26. 26.
    Fischer, A., & Vance, J. M. (2003). Phantom haptic device implemented in a projection screen virtual environment. In Proc. of workshop on virtual environments, EGVE’03 (pp. 225–229). New York: ACM. Google Scholar
  27. 27.
    Isshiki, M., Sezaki, T., Akahane, K., Hashimoto, N., & Sato, M. (2008). A proposal of a clutch mechanism for 6dof haptic devices. In Proc. of 18th international conference on artificial reality and telexistence (pp. 57–63). Google Scholar
  28. 28.
    Zhai, S. (1998). User performance in relation to 3d input device design. SIGGRAPH Computer Graphics, 32(4), 50–54. CrossRefGoogle Scholar
  29. 29.
    Ullrich, S., Rausch, D., & Kuhlen, T. (2011). Bimanual haptic simulator for medical training: system architecture and performance measurement. In Joint virtual reality conference of EuroVR—EGVE. Google Scholar
  30. 30.
    Cutler, L. D., Fröhlich, B., & Hanrahan, P. (1997). Two-handed direct manipulation on the responsive workbench. In Proc. of symposium on interactive 3D graphics, I3D’97 (pp. 107–114). New York: ACM. Google Scholar
  31. 31.
    García-Robledo, P., Ortego, J., Ferre, M., Barrio, J., & Sánchez-Urán, M. A. (2011). Segmentation of bimanual virtual object manipulation tasks using multifinger haptic interfaces. IEEE Transactions on Instrumentation and Measurement, 60(1), 69–80. CrossRefGoogle Scholar
  32. 32.
    Borst, C. W., & Indugula, A. P. (2006). A spring model for whole-hand virtual grasping. Presence: Teleoperators & Virtual Environments, 15(1), 47–61. CrossRefGoogle Scholar
  33. 33.
    Pouliquen, M., Duriez, C., Andriot, C., Bernard, A., Chodorge, L., & Gosselin, F. (2005). Real-time finite element finger pinch grasp simulation. In Proc. of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 323–328). CrossRefGoogle Scholar
  34. 34.
    Jacobs, J., & Froehlich, B. (2011). A soft hand model for physically-based manipulation of virtual objects. In Proc. of IEEE VR (pp. 11–18). Google Scholar
  35. 35.
    Garre, C., Hernandez, F., Gracia, A., & Otaduy, M. A. (2011). Interactive simulation of a deformable hand for haptic rendering. In Proc. of IEEE world haptics conference (pp. 239–244). CrossRefGoogle Scholar
  36. 36.
    Jacobs, J., Stengel, M., & Froehlich, B. (2012). A generalized god-object method for plausible finger-based interactions in virtual environments. In Proc. of IEEE symposium on 3D user interfaces (pp. 43–51). Google Scholar
  37. 37.
    Colgate, J. E., Stanley, M. C., & Brown, J. M. (1995). Issues in the haptic display of tool use. In Proc. of international conference on intelligent robots and systems (Vol. 3, pp. 140–145). Google Scholar
  38. 38.
    Bergamasco, M., Avizzano, C. A., Frisoli, A., Ruffaldi, E., & Marcheschi, S. (2006). Design and validation of a complete haptic system for manipulative tasks. Advanced Robotics, 20(3), 367–389. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Anthony Talvas
    • 1
  • Maud Marchal
    • 1
  • Gabriel Cirio
    • 2
  • Anatole Lécuyer
    • 2
  1. 1.IRISA/INRIA/INSARennesFrance
  2. 2.IRISA/INRIARennesFrance

Personalised recommendations