Ventricular-Arterial Coupling and Mechanism of Wave Reflections

Chapter

Abstract

In this chapter, we discuss two approaches to quantitatively assess ventricular-arterial interaction: (i) the “classic” approach based on matching of ventricular and arterial elastance (analysis in pressure-volume plane) and (ii) a novel approach based on assessment of time-varying myocardial stress. The latter analysis, in the time domain, allows to directly link left ventricular myocardial stress with systemic arterial properties and with the magnitude and timing of arterial wave reflections.

Keywords

Hemodynamics Arterial function Ventricular function Wave reflections Heart failure 

References

  1. 1.
    Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.PubMedGoogle Scholar
  2. 2.
    Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35:117–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86:513–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250:R1021–7.PubMedGoogle Scholar
  5. 5.
    Suga H, Hayashi T, Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981;240:H39–44.PubMedGoogle Scholar
  6. 6.
    Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32:1221–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishihara H, Yokota M, Sobue T, Saito H. Relation between ventriculoarterial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1994;23:406–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Sasayama S, Asanoi H. Coupling between the heart and arterial system in heart failure. Am J Med. 1991;90:14S–8.PubMedCrossRefGoogle Scholar
  9. 9.
    van der Velde ET, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation. 1991;83:315–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Segers P, Stergiopulos N, Westerhof N. Relation of effective arterial elastance to arterial system properties. Am J Physiol Heart Circ Physiol. 2002;282:H1041–6.PubMedGoogle Scholar
  11. 11.
    Segers P, Stergiopulos N, Westerhof N. Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension. 2000;36:760–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell GF. Arterial stiffness and wave reflection in hypertension: pathophysiologic and therapeutic implications. Curr Hypertens Rep. 2004;6:436–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Westerhof N, Lankhaar JW, Westerhof BE. The arterial windkessel. Med Biol Eng Comput. 2009;47:131–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Nichols WW, O’Rourke MF, Vlachopolous C. Mcdonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London: Hodder Arnold; 2011.Google Scholar
  15. 15.
    Segers P, Verdonck P. Principles of vascular physiology. In: Lanzer P, Topol E, editors. Panvascular medicine: integrated clinical management. Berlin/Heidelberg: Springer; 2002.Google Scholar
  16. 16.
    O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Ooi H, Chung W, Biolo A. Arterial stiffness and vascular load in heart failure. Congest Heart Fail. 2008;14:31–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Aakhus S, Soerlie C, Faanes A, Hauger SO, Bjoernstad K, Hatle L, Angelsen BA. Noninvasive computerized assessment of left ventricular performance and systemic hemodynamics by study of aortic root pressure and flow estimates in healthy men, and men with acute and healed myocardial infarction. Am J Cardiol. 1993;72:260–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell GF, Lacourciere Y, Arnold JM, Dunlap ME, Conlin PR, Izzo Jr JL. Changes in aortic stiffness and augmentation index after acute converting enzyme or vasopeptidase inhibition. Hypertension. 2005;46:1111–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Mitchell GF, Lacourciere Y, Ouellet JP, Izzo Jr JL, Neutel J, Kerwin LJ, Block AJ, Pfeffer MA. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension. 2007;49:1248–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN. Applications of phase-contrast flow and velocity imaging in cardiovascular mri. Eur Radiol. 2005;15:2172–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Kass DA. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension. 2005;46:185–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Mitchell GF. Clinical achievements of impedance analysis. Med Biol Eng Comput. 2009;47:153–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 2010;56:563–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Segers P, Rietzschel ER, De Buyzere ML, Stergiopulos N, Westerhof N, Van Bortel LM, Gillebert T, Verdonck PR. Three- and four-element windkessel models: assessment of their fitting performance in a large cohort of healthy middle-aged individuals. Proc Inst Mech Eng H. 2008;222:417–28.PubMedCrossRefGoogle Scholar
  27. 27.
    Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol. 1999;276:H81–8.PubMedGoogle Scholar
  28. 28.
    Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Chirinos JA. Arterial stiffness: basic concepts and measurement techniques. J Cardiovasc Transl Res. 2012;5:243–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Arts T, Bovendeerd PH, Prinzen FW, Reneman RS. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J. 1991;59:93–102.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Chirinos JA, Segers P, Gupta AK, Swillens A, Rietzschel ER, De Buyzere ML, Kirkpatrick JN, Gillebert TC, Wang Y, Keane MG, Townsend R, Ferrari VA, Wiegers SE, St John Sutton M. Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation. 2009;119:2798–807.PubMedCrossRefGoogle Scholar
  33. 33.
    Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, De Bacquer D, St John Sutton M, Gillebert T, Asklepios Investigators. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults. The asklepios study. Hypertension. 2013;61:296–303.PubMedCrossRefGoogle Scholar
  34. 34.
    Chirinos JA, Segers P, Gillebert TC, Gupta AK, De Buyzere ML, De Bacquer D, St John-Sutton M, Rietzschel ER. Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension. 2012;60:64–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Shah SJ, Wasserstrom JA. Increased arterial wave reflection magnitude: a novel form of stage b heart failure? J Am Coll Cardiol. 2012;60:2178–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Chowienczyk P, Shah A. Myocardial wall stress: from hypertension to heart tension. Hypertension. 2012;60:10–1.PubMedCrossRefGoogle Scholar
  37. 37.
    Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y, Ryoke T, Ohkusa T, Yamakawa K, Matsuzaki M. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94:3362–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Gillebert TC, Lew WY. Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol. 1991;261:H805–13.PubMedGoogle Scholar
  39. 39.
    Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O’Rourke MF. Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. J Hypertens. 2008;26:1017–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Fukuta H, Ohte N, Wakami K, Asada K, Goto T, Mukai S, Tani T, Kimura G. Impact of arterial load on left ventricular diastolic function in patients undergoing cardiac catheterization for coronary artery disease. Circ J. 2010;74:1900–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Weber T, O’Rourke MF, Ammer M, Kvas E, Punzengruber C, Eber B. Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am J Hypertens. 2008;21:1194–202.PubMedCrossRefGoogle Scholar
  42. 42.
    Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, Kass DA. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Ikonomidis I, Tzortzis S, Papaioannou T, Protogerou A, Stamatelopoulos K, Papamichael C, Zakopoulos N, Lekakis J. Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension. J Hum Hypertens. 2008;22:687–98.PubMedCrossRefGoogle Scholar
  44. 44.
    Chirinos JA, Rietzschel ER, De Buyzere ML, De Bacquer D, Gillebert TC, Gupta AK, Segers P. Arterial load and ventricular-arterial coupling: physiologic relations with body size and effect of obesity. Hypertension. 2009;54:558–66.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, Claessens T, Gillebert TC, St John-Sutton M, Rietzschel ER. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56:91–8.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, De Bacquer D, St John Sutton M, Gillebert TC. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the asklepios study. Hypertension. 2013;61:296–303.PubMedCrossRefGoogle Scholar
  47. 47.
    Chirinos JA, Kips JG, Jacobs Jr DR, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: Mesa (multiethnic study of atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Laskey WK, Kussmaul WG. Arterial wave reflection in heart failure. Circulation. 1987;75:711–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Pepine CJ, Nichols WW, Conti CR. Aortic input impedance in heart failure. Circulation. 1978;58:460–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Curtis SL, Zambanini A, Mayet J, Mc GTSA, Foale R, Parker KH, Hughes AD. Reduced systolic wave generation and increased peripheral wave reflection in chronic heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H557–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Weber T, Wassertheurer S, O’Rourke MF, Haiden A, Zweiker R, Rammer M, Hametner B, Eber B. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Sung SH, Yu WC, Cheng HM, Lee CW, Lin MM, Chuang SY, Chen CH. Excessive wave reflections on admission predict post-discharge events in patients hospitalized due to acute heart failure. Eur J Heart Fail. 2012;14:1348–55.PubMedCrossRefGoogle Scholar
  53. 53.
    Campbell KB, Lee LC, Frasch HF, Noordergraaf A. Pulse reflection sites and effective length of the arterial system. Am J Physiol. 1989;256:H1684–9.PubMedGoogle Scholar
  54. 54.
    Pythoud F, Stergiopulos N, Westerhof N, Meister JJ. Method for determining distribution of reflection sites in the arterial system. Am J Physiol. 1996;271:H1807–13.PubMedGoogle Scholar
  55. 55.
    Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.PubMedCrossRefGoogle Scholar
  56. 56.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105–16.PubMedCrossRefGoogle Scholar
  57. 57.
    O’Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol. 1967;23:139–49.PubMedGoogle Scholar
  58. 58.
    Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF. Functional origin of reflected pressure waves in a multibranched model of the human arterial system. Am J Physiol. 1994;267:H1681–8.PubMedGoogle Scholar
  59. 59.
    O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20:365–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Taylor MG. The input impedance of an assembly of randomly branching elastic tubes. Biophys J. 1966;6:29–51.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Segers P, Verdonck P. Role of tapering in aortic wave reflection: hydraulic and mathematical model study. J Biomech. 2000;33:299–306.PubMedCrossRefGoogle Scholar
  62. 62.
    Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Segers P, Mynard J, Taelman L, Vermeersch S, Swillens A. Wave reflection: myth or reality? Artery Res. 2012;6:7–11.CrossRefGoogle Scholar
  64. 64.
    Segers P, Kips J, Trachet B, Swillens A, Vermeersch S, Mahieu D, Rietzschel ER, De Buyzere M, Van Bortel L. Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity. Artery Res. 2009;3:79–88.CrossRefGoogle Scholar
  65. 65.
    Westerhof BE, Westerhof N. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. J Hypertens. 2012;30:932–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Kelly RP, Gibbs HH, O’Rourke MF, Daley JE, Mang K, Morgan JJ, Avolio AP. Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J. 1990;11:138–44.PubMedGoogle Scholar
  67. 67.
    Pauca AL, Kon ND, O’Rourke MF. Benefit of glyceryl trinitrate on arterial stiffness is directly due to effects on peripheral arteries. Heart. 2005;91:1428–32.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Philadelphia Veterans Affairs Medical CenterUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Institute Biomedical Technology (IBiTech), iMinds Medical IT, Ghent UniversityGhentBelgium

Personalised recommendations