Skip to main content

Ventricular-Arterial Coupling and Mechanism of Wave Reflections

  • Chapter
  • First Online:
  • 2023 Accesses

Abstract

In this chapter, we discuss two approaches to quantitatively assess ventricular-arterial interaction: (i) the “classic” approach based on matching of ventricular and arterial elastance (analysis in pressure-volume plane) and (ii) a novel approach based on assessment of time-varying myocardial stress. The latter analysis, in the time domain, allows to directly link left ventricular myocardial stress with systemic arterial properties and with the magnitude and timing of arterial wave reflections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.

    CAS  PubMed  Google Scholar 

  2. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35:117–26.

    Article  CAS  PubMed  Google Scholar 

  3. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86:513–21.

    Article  CAS  PubMed  Google Scholar 

  4. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250:R1021–7.

    CAS  PubMed  Google Scholar 

  5. Suga H, Hayashi T, Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol. 1981;240:H39–44.

    CAS  PubMed  Google Scholar 

  6. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32:1221–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ishihara H, Yokota M, Sobue T, Saito H. Relation between ventriculoarterial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1994;23:406–16.

    Article  CAS  PubMed  Google Scholar 

  8. Sasayama S, Asanoi H. Coupling between the heart and arterial system in heart failure. Am J Med. 1991;90:14S–8.

    Article  CAS  PubMed  Google Scholar 

  9. van der Velde ET, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J. Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation. 1991;83:315–27.

    Article  PubMed  Google Scholar 

  10. Segers P, Stergiopulos N, Westerhof N. Relation of effective arterial elastance to arterial system properties. Am J Physiol Heart Circ Physiol. 2002;282:H1041–6.

    CAS  PubMed  Google Scholar 

  11. Segers P, Stergiopulos N, Westerhof N. Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension. 2000;36:760–5.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell GF. Arterial stiffness and wave reflection in hypertension: pathophysiologic and therapeutic implications. Curr Hypertens Rep. 2004;6:436–41.

    Article  PubMed  Google Scholar 

  13. Westerhof N, Lankhaar JW, Westerhof BE. The arterial windkessel. Med Biol Eng Comput. 2009;47:131–41.

    Article  PubMed  Google Scholar 

  14. Nichols WW, O’Rourke MF, Vlachopolous C. Mcdonald’s blood flow in arteries. Theoretical, experimental and clinical principles. London: Hodder Arnold; 2011.

    Google Scholar 

  15. Segers P, Verdonck P. Principles of vascular physiology. In: Lanzer P, Topol E, editors. Panvascular medicine: integrated clinical management. Berlin/Heidelberg: Springer; 2002.

    Google Scholar 

  16. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    Article  PubMed  Google Scholar 

  17. Ooi H, Chung W, Biolo A. Arterial stiffness and vascular load in heart failure. Congest Heart Fail. 2008;14:31–6.

    Article  PubMed  Google Scholar 

  18. Aakhus S, Soerlie C, Faanes A, Hauger SO, Bjoernstad K, Hatle L, Angelsen BA. Noninvasive computerized assessment of left ventricular performance and systemic hemodynamics by study of aortic root pressure and flow estimates in healthy men, and men with acute and healed myocardial infarction. Am J Cardiol. 1993;72:260–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell GF, Lacourciere Y, Arnold JM, Dunlap ME, Conlin PR, Izzo Jr JL. Changes in aortic stiffness and augmentation index after acute converting enzyme or vasopeptidase inhibition. Hypertension. 2005;46:1111–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo Jr JL, Neutel J, Kerwin LJ, Block AJ, Pfeffer MA. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  21. Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension. 2007;49:1248–55.

    Article  CAS  PubMed  Google Scholar 

  22. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN. Applications of phase-contrast flow and velocity imaging in cardiovascular mri. Eur Radiol. 2005;15:2172–84.

    Article  PubMed  Google Scholar 

  23. Kass DA. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension. 2005;46:185–93.

    Article  CAS  PubMed  Google Scholar 

  24. Mitchell GF. Clinical achievements of impedance analysis. Med Biol Eng Comput. 2009;47:153–63.

    Article  PubMed  Google Scholar 

  25. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 2010;56:563–70.

    Article  CAS  PubMed  Google Scholar 

  26. Segers P, Rietzschel ER, De Buyzere ML, Stergiopulos N, Westerhof N, Van Bortel LM, Gillebert T, Verdonck PR. Three- and four-element windkessel models: assessment of their fitting performance in a large cohort of healthy middle-aged individuals. Proc Inst Mech Eng H. 2008;222:417–28.

    Article  CAS  PubMed  Google Scholar 

  27. Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol. 1999;276:H81–8.

    CAS  PubMed  Google Scholar 

  28. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.

    Article  CAS  PubMed  Google Scholar 

  29. Chirinos JA. Arterial stiffness: basic concepts and measurement techniques. J Cardiovasc Transl Res. 2012;5:243–55.

    Article  PubMed  Google Scholar 

  30. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    Article  PubMed  Google Scholar 

  31. Arts T, Bovendeerd PH, Prinzen FW, Reneman RS. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J. 1991;59:93–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chirinos JA, Segers P, Gupta AK, Swillens A, Rietzschel ER, De Buyzere ML, Kirkpatrick JN, Gillebert TC, Wang Y, Keane MG, Townsend R, Ferrari VA, Wiegers SE, St John Sutton M. Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation. 2009;119:2798–807.

    Article  PubMed  Google Scholar 

  33. Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, De Bacquer D, St John Sutton M, Gillebert T, Asklepios Investigators. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults. The asklepios study. Hypertension. 2013;61:296–303.

    Article  CAS  PubMed  Google Scholar 

  34. Chirinos JA, Segers P, Gillebert TC, Gupta AK, De Buyzere ML, De Bacquer D, St John-Sutton M, Rietzschel ER. Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension. 2012;60:64–70.

    Article  CAS  PubMed  Google Scholar 

  35. Shah SJ, Wasserstrom JA. Increased arterial wave reflection magnitude: a novel form of stage b heart failure? J Am Coll Cardiol. 2012;60:2178–81.

    Article  PubMed  Google Scholar 

  36. Chowienczyk P, Shah A. Myocardial wall stress: from hypertension to heart tension. Hypertension. 2012;60:10–1.

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y, Ryoke T, Ohkusa T, Yamakawa K, Matsuzaki M. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94:3362–8.

    Article  CAS  PubMed  Google Scholar 

  38. Gillebert TC, Lew WY. Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol. 1991;261:H805–13.

    CAS  PubMed  Google Scholar 

  39. Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O’Rourke MF. Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. J Hypertens. 2008;26:1017–24.

    Article  CAS  PubMed  Google Scholar 

  40. Fukuta H, Ohte N, Wakami K, Asada K, Goto T, Mukai S, Tani T, Kimura G. Impact of arterial load on left ventricular diastolic function in patients undergoing cardiac catheterization for coronary artery disease. Circ J. 2010;74:1900–5.

    Article  PubMed  Google Scholar 

  41. Weber T, O’Rourke MF, Ammer M, Kvas E, Punzengruber C, Eber B. Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am J Hypertens. 2008;21:1194–202.

    Article  PubMed  Google Scholar 

  42. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, Kass DA. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7.

    Article  PubMed  Google Scholar 

  43. Ikonomidis I, Tzortzis S, Papaioannou T, Protogerou A, Stamatelopoulos K, Papamichael C, Zakopoulos N, Lekakis J. Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension. J Hum Hypertens. 2008;22:687–98.

    Article  CAS  PubMed  Google Scholar 

  44. Chirinos JA, Rietzschel ER, De Buyzere ML, De Bacquer D, Gillebert TC, Gupta AK, Segers P. Arterial load and ventricular-arterial coupling: physiologic relations with body size and effect of obesity. Hypertension. 2009;54:558–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, Claessens T, Gillebert TC, St John-Sutton M, Rietzschel ER. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56:91–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, De Bacquer D, St John Sutton M, Gillebert TC. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the asklepios study. Hypertension. 2013;61:296–303.

    Article  CAS  PubMed  Google Scholar 

  47. Chirinos JA, Kips JG, Jacobs Jr DR, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: Mesa (multiethnic study of atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Laskey WK, Kussmaul WG. Arterial wave reflection in heart failure. Circulation. 1987;75:711–22.

    Article  CAS  PubMed  Google Scholar 

  49. Pepine CJ, Nichols WW, Conti CR. Aortic input impedance in heart failure. Circulation. 1978;58:460–5.

    Article  CAS  PubMed  Google Scholar 

  50. Curtis SL, Zambanini A, Mayet J, Mc GTSA, Foale R, Parker KH, Hughes AD. Reduced systolic wave generation and increased peripheral wave reflection in chronic heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H557–62.

    Article  CAS  PubMed  Google Scholar 

  51. Weber T, Wassertheurer S, O’Rourke MF, Haiden A, Zweiker R, Rammer M, Hametner B, Eber B. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83.

    Article  PubMed  Google Scholar 

  52. Sung SH, Yu WC, Cheng HM, Lee CW, Lin MM, Chuang SY, Chen CH. Excessive wave reflections on admission predict post-discharge events in patients hospitalized due to acute heart failure. Eur J Heart Fail. 2012;14:1348–55.

    Article  PubMed  Google Scholar 

  53. Campbell KB, Lee LC, Frasch HF, Noordergraaf A. Pulse reflection sites and effective length of the arterial system. Am J Physiol. 1989;256:H1684–9.

    CAS  PubMed  Google Scholar 

  54. Pythoud F, Stergiopulos N, Westerhof N, Meister JJ. Method for determining distribution of reflection sites in the arterial system. Am J Physiol. 1996;271:H1807–13.

    CAS  PubMed  Google Scholar 

  55. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.

    Article  CAS  PubMed  Google Scholar 

  56. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105–16.

    Article  CAS  PubMed  Google Scholar 

  57. O’Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol. 1967;23:139–49.

    PubMed  Google Scholar 

  58. Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF. Functional origin of reflected pressure waves in a multibranched model of the human arterial system. Am J Physiol. 1994;267:H1681–8.

    CAS  PubMed  Google Scholar 

  59. O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20:365–80.

    Article  PubMed  Google Scholar 

  60. Taylor MG. The input impedance of an assembly of randomly branching elastic tubes. Biophys J. 1966;6:29–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Segers P, Verdonck P. Role of tapering in aortic wave reflection: hydraulic and mathematical model study. J Biomech. 2000;33:299–306.

    Article  CAS  PubMed  Google Scholar 

  62. Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.

    Article  CAS  PubMed  Google Scholar 

  63. Segers P, Mynard J, Taelman L, Vermeersch S, Swillens A. Wave reflection: myth or reality? Artery Res. 2012;6:7–11.

    Article  Google Scholar 

  64. Segers P, Kips J, Trachet B, Swillens A, Vermeersch S, Mahieu D, Rietzschel ER, De Buyzere M, Van Bortel L. Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity. Artery Res. 2009;3:79–88.

    Article  Google Scholar 

  65. Westerhof BE, Westerhof N. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. J Hypertens. 2012;30:932–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kelly RP, Gibbs HH, O’Rourke MF, Daley JE, Mang K, Morgan JJ, Avolio AP. Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J. 1990;11:138–44.

    CAS  PubMed  Google Scholar 

  67. Pauca AL, Kon ND, O’Rourke MF. Benefit of glyceryl trinitrate on arterial stiffness is directly due to effects on peripheral arteries. Heart. 2005;91:1428–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Segers PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Chirinos, J.A., Segers, P. (2014). Ventricular-Arterial Coupling and Mechanism of Wave Reflections. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics