Skip to main content

Glucose, Insulin and Potential Strategies of Vascular Stiffening

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

Hyperglycemia and hyperinsulinemia which are independent risk factors for vascular stiffening and diabetic vasculopathy are present in most patients with Type 2 diabetes mellitus. In this review we discuss these factors which promote vascular stiffness. We also discuss the roles of renin- angiotensin II -aldosterone (RAAS) activation, obesity, hypertension, dyslipidemia and insulin resistance, features which often present in the CardioRenal metabolic syndrome. Here, we provide new insights in the pathogenesis of vascular stiffening induced by RAAS, including the dysfunction of vascular smooth muscle cells and endothelial cells; inflammation, oxidation stress, as well as alterations in collagen and elastin. We also introduce a novel concept where both β1-integrin and α-smooth muscle actin are likely major players in the increased vascular stiffening as ascertained by atomic force microscopy technology. We explore therapies such as estrogens aimed at vascular de-stiffening which may improve vascular function in patients. This review highlights recent evidence supporting the role of RAAS and insulin resistance in the development of vascular stiffening in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luft FC. Molecular mechanisms of arterial stiffness: new insights. J Am Soc Hypertens. 2012;6:436–8.

    Article  PubMed  Google Scholar 

  2. Wang X, Keith Jr JC, Struthers AD, Feuerstein GZ. Assessment of arterial stiffness, a translational medicine biomarker system for evaluation of vascular risk. Cardiovasc Ther. 2008;26:214–23.

    Article  PubMed  Google Scholar 

  3. The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31:2338–50.

    Article  PubMed Central  Google Scholar 

  4. Lo CS, Relf IRN, Myers KA, Wahlquist ML. Doppler ultrasound recognition of preclinical changes in arterial wall in diabetic subjects: compliance and pulse-wave damping. Diabetes Care. 1986;9:27–31.

    Article  CAS  PubMed  Google Scholar 

  5. Wahlquist ML, Lo CS, Myers KE, Simpson RW, Simpson JM. Putative determinants of arterial wall compliance in NIDDM. Diabetes Care. 1988;11:787–90.

    Article  Google Scholar 

  6. Lehmann EO, Gosling RG, Söuksen PH. Arterial wall compliance in diabetes. Diabet Med. 1992;9:114–9.

    Article  CAS  PubMed  Google Scholar 

  7. Neutel JM, Smith DHG, Graettinger WF, Weber MA. Dependency of arterial compliance on circulating neuroendocrine and metabolic factors in normal subjects. Am J Cardiol. 1992;69:1340–4.

    Article  CAS  PubMed  Google Scholar 

  8. Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR. Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC Study Atherosclerosis Risk in Communities Study. Circulation. 1995;91:1432–43.

    Article  CAS  PubMed  Google Scholar 

  9. Tounian P, Aggoun Y, Dubern B, Varille V, Guy-Grand B, Sidi D, Girardet JP, Bonnet D. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet. 2001;27(358):1400–4.

    Article  Google Scholar 

  10. Ho CT, Lin CC, Hsu HS, Liu CS, Davidson LE, Li TC, Li CI, Lin WY. Arterial stiffness is strongly associated with insulin resistance in Chinese–a population-based study (Taichung Community Health Study, TCHS). J Atheroscler Thromb. 2011;18:122–30.

    Article  CAS  PubMed  Google Scholar 

  11. van Popele NM, Elizabeth Hak A, Mattace-Raso FU, Bots ML, van der Kuip DA, Reneman RS, Hoeks AP, Hofman A, Grobbee DE, Witteman JC. Impaired fasting glucose is associated with increased arterial stiffness in elderly people without diabetes mellitus: the Rotterdam Study. J Am Geriatr Soc. 2006;54:397–404.

    Article  PubMed  Google Scholar 

  12. Siekmeier R, Grammer T, März W. Roles of oxidants, nitric oxide, and asymmetric dimethylarginine in endothelial function. J Cardiovasc Pharmacol Ther. 2008;13:279–97.

    Article  CAS  PubMed  Google Scholar 

  13. Muniyappa R, Sowers JR. Endothelial insulin and IGF-1 receptors: when yes means NO. Diabetes. 2012;61:2225–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Vaccari CS, Lerakis S, Hammoud R, Khan BV. Mechanisms of benefit of angiotensin receptor blockers in coronary atherosclerosis. Am J Med Sci. 2008;336:270–7.

    Article  PubMed  Google Scholar 

  15. Daemen MJ, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991;68:450–6.

    Article  CAS  PubMed  Google Scholar 

  16. Sodhi CP, Kanwar YS, Sahai A. Hypoxia and high glucose upregulate AT1 receptor expression and potentiate ANG II-induced proliferation in VSM cells. Am J Physiol Heart Circ Physiol. 2003;284:H846–52.

    CAS  PubMed  Google Scholar 

  17. Reusch JE, Wang CC. Cardiovascular disease in diabetes: where does glucose fit in? J Clin Endocrinol Metab. 2011;96:2367–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Min Q, Bai YT, Jia G, Wu J, Xiang JZ. High glucose enhances angiotensin-II-mediated peroxisome proliferation-activated receptor-gamma inactivation in human coronary artery endothelial cells. Exp Mol Pathol. 2010;88:133–7.

    Article  CAS  PubMed  Google Scholar 

  19. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care. 2008;31:S262–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes. 2013;62:313–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32:2052–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab. 2012;302:E201–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Garg R, Adler GK. Role of mineralocorticoid receptor in insulin resistance. Curr Opin Endocrinol Diabetes Obes. 2012;19:168–75.

    Article  CAS  PubMed  Google Scholar 

  24. Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 2013;15:59–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wada T, Kenmochi H, Miyashita Y, Sasaki M, Ojima M, Sasahara M, Koya D, Tsuneki H, Sasaoka T. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology. 2010;151:2040–9.

    Article  CAS  PubMed  Google Scholar 

  26. Benetos A, et al. Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats. Arterioscl Thom Vas Biol. 1997;17:1152–6.

    Article  CAS  Google Scholar 

  27. Jeggle P, Callies C, Tarjus A, Fassot C, Fels J, Oberleithner H, Jaisser F, Kusche-Vihrog K. Epithelial sodium channel stiffens the vascular endothelium in vitro and in liddle mice. Hypertension. 2013;61(5):1053–9.

    Article  CAS  PubMed  Google Scholar 

  28. Doronzo G, Russo I, Mattiello L, Anfossi G, Bosia A, Trovati M. Insulin activates vascular endothelial growth factor in vascular smooth muscle cells: influence of nitric oxide and of insulin resistance. Eur J Clin Invest. 2004;34:664–73.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 2006;99:1044–59.

    Article  CAS  PubMed  Google Scholar 

  30. Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, Frutkin A, Dichek D, Giachelli CM. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104:733–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yuan LQ, Zhu JH, Wang HW, Liang QH, Xie H, Wu XP, Zhou H, Cui RR, Sheng ZF, Zhou HD, Zhu X, Liu GY, Liu YS, Liao EY. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One. 2011;6:e29037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM, Chen Y. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283:15319–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Blaha MJ, DeFilippis AP, Rivera JJ, Budoff MJ, Blankstein R, Agatston A, Szklo M, Lakoski SG, Bertoni AG, Kronmal RA, Blumenthal RS, Nasir K. The relationship between insulin resistance and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2011;34:749–51.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Olesen P, Nguyen K, Wogensen L, Ledet T, Rasmussen LM. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am J Physiol Heart Circ Physiol. 2007;292:H1058–64.

    Article  CAS  PubMed  Google Scholar 

  35. Wang CC, Sorribas V, Sharma G, Levi M, Draznin B. Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis. 2007;195:e65–75.

    Article  CAS  PubMed  Google Scholar 

  36. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.

    Article  PubMed  Google Scholar 

  37. Jia G, Stormont RM, Gangahar DM, Agrawal DK. Role of matrix Gla protein in angiotensin II-induced exacerbation of vascular calcification. Am J Physiol Heart Circ Physiol. 2012;303:H523–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Barnes JN, Nualnim N, Sugawara J, Sommerlad SM, Renzi CP, Tanaka H. Arterial stiffening, wave reflection, and inflammation in habitually exercising systemic lupus erythematosus patients. Am J Hypertens. 2011;24:1194–200.

    Article  CAS  PubMed  Google Scholar 

  39. Mäki-Petäjä KM, Elkhawad M, Cheriyan J, Joshi FR, Ostör AJ, Hall FC, Rudd JH, Wilkinson IB. Anti-tumor necrosis factor-α therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation. 2012;126:2473–80.

    Article  PubMed  Google Scholar 

  40. Zanoli L, Cannavò M, Rastelli S, Di Pino L, Monte I, Di Gangi M, Boutouyrie P, Inserra G, Laurent S, Castellino P. Arterial stiffness is increased in patients with inflammatory bowel disease. J Hypertens. 2012;30:1775–81.

    Article  CAS  PubMed  Google Scholar 

  41. Kals J, Kampus P, Kals M, Pulges A, Teesalu R, Zilmer K, Kullisaar T, Salum T, Eha J, Zilmer M. Inflammation and oxidative stress are associated differently with endothelial function and arterial stiffness in healthy subjects and in patients with atherosclerosis. Scand J Clin Lab Invest. 2008;68:594–601.

    Article  CAS  PubMed  Google Scholar 

  42. van Bussel BC, Schouten F, Henry RM, Schalkwijk CG, de Boer MR, Ferreira I, Smulders YM, Twisk JW, Stehouwer CD. Endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness over a 6-year period. Hypertension. 2011;58:588–95.

    Article  PubMed  Google Scholar 

  43. Woodard GA, Mehta VG, Mackey RH, Tepper P, Kelsey SF, Newman AB, Sutton-Tyrrell K. C-reactive protein is associated with aortic stiffness in a cohort of African American and white women transitioning through menopause. Menopause. 2011;18:1291–7.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Park S, Lakatta EG. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Med J. 2012;53:258–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cooper JN, Tepper P, Barinas-Mitchell E, Woodard GA, Sutton-Tyrrell K. Serum aldosterone is associated with inflammation and aortic stiffness in normotensive overweight and obese young adults. Clin Exp Hypertens. 2012;34:63–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–80.

    Article  CAS  PubMed  Google Scholar 

  47. He S, Li M, Ma X, Lin J, Li D. CD4+ CD25 + Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol. 2010;30:2621–30.

    Article  CAS  PubMed  Google Scholar 

  48. Wykretowicz A, Adamska K, Krauze T, Guzik P, Szczepanik A, Rutkowska A, Wysoki H. The plasma concentration of advanced oxidation protein products and arterial stiffness in apparently healthy adults. Free Radic Res. 2007;41:645–9.

    Article  CAS  PubMed  Google Scholar 

  49. Patel RS, Al Mheid I, Morris AA, Ahmed Y, Kavtaradze N, Ali S, Dabhadkar K, Brigham K, Hooper WC, Alexander RW, Jones DP, Quyyumi AA. Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis. 2011;218:90–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Whaley-Connell A, Sowers JR. Oxidative stress in the cardiorenal metabolic syndrome. Curr Hypertens Rep. 2012;14:360–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhou RH, Vendrov AE, Tchivilev I, Niu XL, Molnar KC, Rojas M, Carter JD, Tong H, Stouffer GA, Madamanchi NR, Runge MS. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function. Arterioscler Thromb Vasc Biol. 2012;32:745–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Winer N, Sowers JR. Diabetes and arterial stiffening. Adv Cardiol. 2007;44:245–51.

    Article  CAS  PubMed  Google Scholar 

  53. Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology. 2012;58:227–37.

    Article  CAS  PubMed  Google Scholar 

  54. Winlove CP, Parker KH, Avery NC, Bailey AJ. Interactions of elastin and aorta with sugars in vitro and their effects on biochemical and physical properties. Diabetologia. 1996;39:1131–9.

    Article  CAS  PubMed  Google Scholar 

  55. Corman B, Duriez M, Poitevin P, Heudes D, Bruneval P, Tedgui A, Levy BI. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc Natl Acad Sci U S A. 1998;95:1301–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Shirwany NA, Zou MH. Arterial stiffness: a brief review. Acta Pharmacol Sin. 2010;31:1267–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995;77:863–8.

    Article  CAS  PubMed  Google Scholar 

  58. Chung AW, Yang HH, Sigrist MK, Brin G, Chum E, Gourlay WA, Levin A. Matrix metalloproteinase-2 and -9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res. 2009;84:494–504.

    Article  CAS  PubMed  Google Scholar 

  59. Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45(Suppl A):A25–32.

    Article  PubMed  Google Scholar 

  60. Rzucidlo EM. Signaling pathways regulating vascular smooth muscle cell differentiation. Vascular. 2009;17 Suppl 1:S15–20.

    Article  PubMed  Google Scholar 

  61. Zhu Y, Qiu H, Trzeciakowski JP, Sun Z, Li Z, Hong Z, Hill MA, Hunter WC, Vatner DE, Vatner SF, Meininger GA. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell. 2012;11:741–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, Gansner M, Depre C, Resuello RR, Natividad FF, Hunter WC, Genin GM, Elson EL, Vatner DE, Meininger GA, Vatner SF. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res. 2010;107:615–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Poels MM, Zaccai K, Verwoert GC, Vernooij MW, Hofman A, van der Lugt A, Witteman JC, Breteler MM, Mattace-Raso FU, Ikram MA. Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke. 2012;43:2637–42.

    Article  PubMed  Google Scholar 

  64. Mitchell GF. Arterial stiffness and wave reflection: biomarkers of cardiovascular risk. Artery Res. 2009;3:56–64.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hong Z, Sun Z, Li Z, Mesquitta WT, Trzeciakowski JP, Meininger GA. Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovasc Res. 2012;96:73–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tanaka H, Safar ME. Influence of lifestyle modification on arterial stiffness and wave reflections. Am J Hypertens. 2005;18:137–44.

    Article  PubMed  Google Scholar 

  67. Soro-Paavonen A, Forbes JM. Novel therapeutics for diabetic micro- and macrovascular complications. Curr Med Chem. 2006;13:1777–88.

    Article  CAS  PubMed  Google Scholar 

  68. Boutouyrie P, Lacolley P, Briet M, Regnault V, Stanton A, Laurent S, Mahmud A. Pharmacological modulation of arterial stiffness. Drugs. 2011;71:1689–701.

    Article  CAS  PubMed  Google Scholar 

  69. Mäki-Petäjä KM, Wilkinson IB. Anti-inflammatory drugs and statins for arterial stiffness reduction. Curr Pharm Des. 2009;15:290–303.

    Article  PubMed  Google Scholar 

  70. Safar ME, Blacher J, Jankowski P. Arterial stiffness, pulse pressure, and cardiovascular disease-is it possible to break the vicious circle? Atherosclerosis. 2011;218:263–71.

    Article  CAS  PubMed  Google Scholar 

  71. Pettersson US, Waldén TB, Carlsson PO, Jansson L, Phillipson M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One. 2012;7:e46057.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Ma Y, Qiao X, Falone AE, Reslan OM, Sheppard SJ, Khalil RA. Gender-specific reduction in contraction is associated with increased estrogen receptor expression in single vascular smooth muscle cells of female rat. Cell Physiol Biochem. 2010;26:457–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Manrique C, Lastra G, Habibi J, Mugerfeld I, Garro M, Sowers JR. Loss of estrogen receptor α signaling leads to insulin resistance and obesity in young and adult female mice. Cardiorenal Med. 2012;2:200–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Studies in the Sowers and Meininger laboratories are supported by NIH grant (NIH P01HL095486) to G.A. Meininger and NIH (R01 HL73101-01A and R01 HL107910-01) and the Veterans Affairs Merit System (0018) for J.R. Sowers. The authors which to thank Brenda Hunter for editing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Sowers MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Jia, G., Aroor, A.R., Meininger, G.A., Sowers, J.R. (2014). Glucose, Insulin and Potential Strategies of Vascular Stiffening. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_34

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics