The Reality of Aging Viewed from the Arterial Wall

Chapter

Abstract

The main function of central arteries is to transform the pulsatile flow generated by the heart into an almost continuous distal flow. Major changes in the arterial wall ensue with aging, and are characterized by endothelial dysfunction, smooth muscle proliferation, elastin fragmentation, fibrosis, amyloid protein deposition, and calcification. These processes are driven by a proinflammatory microenvironment that features increased production of angiotensin II (Ang II) and its downstream signaling cascade. The aforementioned structural changes result in a loss of the dampening function of central arteries, widening of pulse pressure, and subsequent adverse effects on the heart and end-organ systems, i.e. the brain and kidneys.

Keywords

Arterial aging Inflammation Angiotensin Pulse wave velocity Pulse pressure 

References

  1. 1.
    Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107(1):139–46.PubMedCrossRefGoogle Scholar
  2. 2.
    Faury G. Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol (Paris). 2001;49(4):310–25.CrossRefGoogle Scholar
  3. 3.
    Lakatta EG, Wang M, Najjar SS. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am. Elsevier Ltd; 2009 ;93(3):583–604.Google Scholar
  4. 4.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.PubMedCrossRefGoogle Scholar
  5. 5.
    Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL, et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51:1377–83.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wang M, et al. Proinflammation: the key to arterial aging. TEM. 2014;25(2):72.PubMedGoogle Scholar
  7. 7.
    Lakatta EG. The reality of aging viewed from the arterial wall. Artery Research. 2013;7(2):73.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46(3):454–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang M, Lakatta EG. Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension. 2002;39(4):865–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG. Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol. 2004;24(8):1397–402.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang M, Zhang J, Jiang L-Q, Spinetti G, Pintus G, Monticone R, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension. 2007;50(1):219–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Ong K-T, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, et al. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29(6):1034–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Lakatta EG. Central arterial aging and the epidemic of systolic hypertension and atherosclerosis. J Am Soc Hypertens. 2007;1:302–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, et al. Deletion of the AP-1 transcription factor JunD induces oxidative stress and accelerates Age-related endothelial dysfunction. Circulation. 2013;127(11):1229–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35(11):1039–47. The Japanese Society of Hypertension.PubMedCrossRefGoogle Scholar
  17. 17.
    Bode-Böger SM, Muke J, Surdacki A, Brabant G, Böger RH, Frölich JC. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc Med. 2003;8(2):77–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Williamson KA, Hamilton A, Reynolds JA, Sipos P, Crocker I, Stringer SE, et al. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans. Aging Cell. 2013;12(1):139–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascula. J Am Soc Echocardiogr. 2008;21(2):93–111.PubMedCrossRefGoogle Scholar
  20. 20.
    Nagai Y, Metter EJ, Earley CJ, Kemper MK, Becker LC, Lakatta EG, et al. Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation. 1998;98(15):1504–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159–69.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang M, Takagi G, Asai K, Resuello RG, Natividad FF, Vatner DE, et al. Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension. 2003;41(6):1308–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Adams MR, Nakagomi A, Keech A, Robinson J, McCredie R, Bailey BP, et al. Carotid intima-media thickness is only weakly correlated with the extent and severity of coronary artery disease. Circulation. 1995;92(8):2127–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104(13):1464–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, et al. Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension. 2012;60(5):1192–9.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Johnson KA, Polewski M, Terkeltaub RA. Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ Res. 2008;102(5):529–37.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Jandu SK, Webb AK, Pak A, Sevinc B, Nyhan D, Belkin AM, et al. Nitric oxide regulates tissue transglutaminase localization and function in the vasculature. Amino Acids. 2013;44(1):261–9.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009;11(2):120–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Iwata T, Kamei T, Uchino F, Mimaya H, Yanagaki T, Etoh H. Pathological study on amyloidosis–relationship of amyloid deposits in the aorta to aging. Acta Pathol Jpn. 1978;28(2):193–203.PubMedGoogle Scholar
  30. 30.
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349(6):583–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Westermark P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 2005;272(23):5942–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Sciarretta KL, Gordon DJ, Meredith SC. Peptide-based inhibitors of amyloid assembly. Methods Enzymol. 2006;413:273–312.PubMedCrossRefGoogle Scholar
  33. 33.
    Thundimadathil J, Roeske RW, Jiang H-Y, Guo L. Aggregation and porin-like channel activity of a beta sheet peptide. Biochemistry. 2005;44(30):10259–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Larsson A, Peng S, Persson H, Rosenbloom J, Abrams WR, Wassberg E, et al. Lactadherin binds to elasti-- starting point for medin amyloid formation? Amyloid. Informa UK Ltd UK; 2006;13(2):78–85.Google Scholar
  35. 35.
    Peng S, Glennert J, Westermark P. Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid. 2005;12(2):96–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Mucchiano G, Cornwell GG, Westermark P. Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am J Pathol. 1992;140(4):871–7.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Morrell CH, Brant LJ, Ferrucci L. Model choice can obscure results in longitudinal studies. J Gerontol A Biol Sci Med Sci. 2009;64(2):215–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Häggqvist B, Näslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, et al. Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci U S A. 1999;96(15):8669–74.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Cheng M, Li B, Li X, Wang Q, Zhang J, Jing X, et al. Correlation between serum lactadherin and pulse wave velocity and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012;95(1):125–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Lam CSP, Xanthakis V, Sullivan LM, Lieb W, Aragam J, Redfield MM, et al. Aortic root remodeling over the adult life course: longitudinal data from the Framingham Heart Study. Circulation. 2010;122(9):884–90.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore longitudinal study of aging. Hypertension. 2013;62(5):934–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308(9):875–81.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al. Attenuated aortic dilatation, not increased wall stiffness best explains the rise in pulse pressure in women with aging: results from the Baltimore longitudinal study of aging. Circulation. 2013;128:A18061.Google Scholar
  44. 44.
    O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50(1):1–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Nichols W, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Boca Raton: CRC Press; 2011.Google Scholar
  46. 46.
    Mitchell GF, Lacourciere Y, Ouellet JP, Izzo Jr JL, Neutel J, Kerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Vaitkevicius PV, Fleg JL, Engel JH, O’Connor FC, Wright JG, Lakatta LE, et al. Effects of age and aerobic capacity on arterial stiffness in healthy-adults. Circulation. 1993;88:1456–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Redheuil A, Yu W-C, Mousseaux E, Harouni AA, Kachenoura N, Wu CO, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58(12):1262–70.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Cecelja M, Jiang B, Spector TD, Chowienczyk P. Progression of central pulse pressure over 1 decade of aging and its reversal by nitroglycerin a twin study. J Am Coll Cardiol. 2012;59(5):475–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Mitchell GF. Impedance progress: aortic diameter rears its head again? Hypertension. 2007;49(6):1207–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Van de Laar RJJ, Stehouwer CDA, van Bussel BCT, Prins MH, Twisk JWR, Ferreira I. Adherence to a Mediterranean dietary pattern in early life is associated with lower arterial stiffness in adulthood: the Amsterdam Growth and Health Longitudinal Study. J Intern Med. 2013;273(1):79–93.PubMedCrossRefGoogle Scholar
  53. 53.
    Cooper JN, Buchanich JM, Youk A, Brooks MM, Barinas-Mitchell E, Conroy MB, et al. Reductions in arterial stiffness with weight loss in overweight and obese young adults: potential mechanisms. Atherosclerosis. 2012;223(2):485–90.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60(5):1200–6.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Austin BA, Popovic ZB, Kwon DH, Thamilarasan M, Boonyasirinant T, Flamm SD, et al. Aortic stiffness independently predicts exercise capacity in hypertrophic cardiomyopathy: a multimodality imaging study. Heart. 2010;96(16):1303–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102(11):1270–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Seals DR, Desouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. J Appl Physiol Soc. 2008;105(4):1323–32.CrossRefGoogle Scholar
  59. 59.
    Kearney TM, Murphy MH, Davison GW, O’Kane MJ, Gallagher AM. Accumulated brisk walking reduces arterial stiffness in overweight adults: evidence from a randomised control trial. J Am Soc Hypertens. 2014;8(2):117–26.PubMedCrossRefGoogle Scholar
  60. 60.
    Heckman GA, McKelvie RS. Cardiovascular aging and exercise in healthy older adults. Clin J Sport Med. 2008;18(6):479–85.PubMedCrossRefGoogle Scholar
  61. 61.
    d’Alessio P. Aging and the endothelium. Exp Gerontol. 2004;39(2):165–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54(2):409–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Morgan T, Lauri J, Bertram D, Anderson A. Effect of different antihypertensive drug classes on central aortic pressure. Am J Hypertens. 2004;17(2):118–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Asmar RG, London GM, O’Rourke ME, Safar ME. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension. 2001;38(4):922–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25.PubMedCrossRefGoogle Scholar
  66. 66.
    Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003.PubMedCrossRefGoogle Scholar
  67. 67.
    Benetos A, Vasmant D, Thiéry P, Safar M. Effects of ramipril on arterial hemodynamics. J Cardiovasc Pharmacol. 1991;18 Suppl 2:S153–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Safar ME, Jankowski P. Antihypertensive therapy and de-stiffening of the arteries. Expert Opin Pharmacother. Informa UK, Ltd. London; 2010;11(16):2625–34.Google Scholar
  69. 69.
    Mitchell GF, Dunlap ME, Warnica W, Ducharme A, Arnold JMO, Tardif J-C, et al. Long-term trandolapril treatment is associated with reduced aortic stiffness: the prevention of events with angiotensin-converting enzyme inhibition hemodynamic substudy. Hypertension. 2007;49(6):1271–7.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Raison J, Rudnichi A, Safar ME. Effects of atorvastatin on aortic pulse wave velocity in patients with hypertension and hypercholesterolaemia: a preliminary study. J Hum Hypertens. 2002;16(10):705–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Ott C, Schneider MP, Schlaich MP, Schmieder RE. Rosuvastatin improves pulse wave reflection by restoring endothelial function. Microvasc Res. 2012;84(1):60–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Tousoulis D, Oikonomou E, Siasos G, Chrysohoou C, Zaromitidou M, Kioufis S, et al. Dose-dependent effects of short term atorvastatin treatment on arterial wall properties and on indices of left ventricular remodeling in ischemic heart failure. Atherosclerosis. 2013;227(2):367–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Farrar DJ, Bond MG, Riley WA, Sawyer JK. Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys. Circulation. 1991;83(5):1754–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54(6):1328–36.PubMedCrossRefGoogle Scholar
  75. 75.
    Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S. Advanced glycation end-product cross-link breakers. A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens. 2004;17(12 Pt 2):23S–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang M, Zhang J, Telljohann R, Jiang L, Wu J, Monticone RE, et al. Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension. 2012;60(2):459–66.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Wang M, Zhang J, Spinetti G, Jiang L-Q, Monticone R, Zhao D, et al. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol. 2005;167(5):1429–42.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Human Cardiovascular Studies Unit, Laboratory of Cardiovascular ScienceNational Institute on Aging, National Institutes of HealthBaltimoreUSA
  2. 2.Department of MedicineJohns Hopkins School of MedicineBaltimoreUSA
  3. 3.Laboratory of Cardiovascular ScienceBiomedical Research CenterBaltimoreUSA
  4. 4.Laboratory of Cardiovascular ScienceIRP, National Institute on Aging, National Institutes of HealthBaltimoreUSA

Personalised recommendations