Skip to main content

Hypoxia, Arterial Blood Pressure, and Microcirculation

  • Chapter
  • First Online:
Book cover Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

The larger part of the systemic hemodynamic resistance is located in the microcirculation. The microcirculatory networks, especially its arteriolar and capillary components, are subjected to angiogenesis in relation to the activation of the HIF-VEGF-NO pathways. In the present chapter we report experiments performed in young and adult spontaneously hypertensive rats maintained for several weeks under chronic hypoxic conditions. Chronic hypoxia resulted in activation of VEGF-induced angiogenesis, increases in myocardial and skeletal muscle capillary density, and normalization of arterial blood pressure in both young prehypertensive rats and old rats with established hypertension.

In parallel and in contrast, administration of bevacizumab, an antibody directed against the VEGF protein, to patients with metastatic colorectal cancer, induced a significant increase in blood pressure in relation to a significant reduction in capillary density and a complete blunting of the endothelial function.

Taken together, these experimental and clinical results suggest that angiogenesis and antiangiogenesis could have rapid and marked effects on the peripheral resistance. Moreover, the density of the capillary bed seems to play a major role in the control of the arterial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension. 2006;48:1012–7.

    Article  CAS  PubMed  Google Scholar 

  2. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735–40.

    Article  CAS  PubMed  Google Scholar 

  3. Levy BI, Duriez M, Samuel JL. Coronary microvasculature alteration in hypertensive rats. Effect of treatment with a diuretic and an ACE inhibitor. Am J Hypertens. 2001;14:7–13.

    Article  CAS  PubMed  Google Scholar 

  4. Sabri A, Samuel JL, Marotte F, Poitevin P, Rappaport L, Levy BI. Microvasculature in angiotensin II-dependent cardiac hypertrophy in the rat. Hypertension. 1998;32:371–5.

    Article  CAS  PubMed  Google Scholar 

  5. Chen II, Prewitt RL, Dowell RF. Microvascular rarefaction in spontaneously hypertensive rat cremaster muscle. Am J Physiol. 1981;241:H306–10.

    CAS  PubMed  Google Scholar 

  6. Antonios TF, Rattray FM, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart. 2003;89:175–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Noon JP, Walker BR, Webb DJ, Shore AC, Holton DW, Edwards HV, Watt GC. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest. 1997;99:1873–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  9. Blanes MG, Oubaha M, Rautureau Y, Gratton JP. Phosphorylation of tyrosine 801 of the VEGFR-2 is necessary for AKT-dependent eNOS activation and nitric oxide release from endothelial cells. J Biol Chem. 2007;282:10660–9.

    Article  CAS  PubMed  Google Scholar 

  10. Janssens SP, Thompson BT, Spence CR, Hales CA. Functional and structural changes with hypoxia in pulmonary circulation of spontaneously hypertensive rats. J Appl Physiol. 1994;77:1101–7.

    CAS  PubMed  Google Scholar 

  11. Henley WN, Tucker A. Hypoxic moderation of systemic hypertension in the spontaneously hypertensive rat. Am J Physiol. 1987;252:R554–61.

    CAS  PubMed  Google Scholar 

  12. Mifflin S. New insights into the electrophysiology of brainstem circuits controlling blood pressure. Curr Hypertens Rep. 2007;9:236–41.

    Article  CAS  PubMed  Google Scholar 

  13. Hainsworth R, Drinkhill MJ, Rivera-Chira M. The autonomic nervous system at high altitude. Clin Auton Res. 2007;17:13–9.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rice TB, Strollo Jr PJ, Morrell MJ. Update in sleep medicine 2011. Am J Respir Crit Care Med. 2012;185:1271–4.

    Article  PubMed  Google Scholar 

  15. Kapa S, Sert Kuniyoshi FH, Somers VK. Sleep apnea and hypertension: interactions and implications for management. Hypertension. 2008;51:605–8.

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan JM, Prewitt RL, Josephs JA. Attenuation of the microcirculation in young patients with high-output borderline hypertension. Hypertension. 1983;5:844–51.

    Article  CAS  PubMed  Google Scholar 

  17. Gasser P, Buhler FR. Nailfold microcirculation in normotensive and essential hypertensive subjects, as assessed by video-microscopy. J Hypertens. 1992;10:83–6.

    Article  CAS  PubMed  Google Scholar 

  18. Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibirica E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19:477–83.

    Article  PubMed  Google Scholar 

  19. Gleadle JM, Ratcliffe PJ. Hypoxia and the regulation of gene expression. Mol Med Today. 1998;4:122–9.

    Article  CAS  PubMed  Google Scholar 

  20. Berra E, Ginouves A, Pouyssegur J. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep. 2006;7:41–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Brogi E, Schatteman G, Wu T, Kim EA, Varticovski L, Keyt B, Isner JM. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest. 1996;97:469–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A. 1998;95:15809–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest. 1995;95:1798–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Waltenberger J, Mayr U, Pentz S, Hombach V. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation. 1996;94:1647–54.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Olszewski B, Rosebury W, Wang D, Robertson A, Keiser JA. Impaired angiogenesis in SHR is associated with decreased KDR and MT1-MMP expression. Biochem Biophys Res Commun. 2004;315:363–8.

    Article  CAS  PubMed  Google Scholar 

  26. Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI. Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res. 2001;89:678–83.

    Article  CAS  PubMed  Google Scholar 

  27. Silvestre JS, Kamsu-Kom N, Clergue M, Duriez M, Levy BI. Very low dose combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide induces an early and sustained increase in neovascularization in rat ischemic legs. J Pharmacol Exp Ther. 2002;303:1038–43.

    Article  CAS  PubMed  Google Scholar 

  28. Sica DA. Angiogenesis inhibitors and hypertension: an emerging issue. J Clin Oncol. 2006;24:1329–31.

    Article  PubMed  Google Scholar 

  29. Ozcan C, Wong SJ, Hari P. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med. 2006;354:980–2.

    Article  PubMed  Google Scholar 

  30. Allen JA, Adlakha A, Bergethon PR. Reversible posterior leukoencephalopathy syndrome after bevacizumab/FOLFIRI regimen for metastatic colon cancer. Arch Neurol. 2006;63:1475–8.

    Article  PubMed  Google Scholar 

  31. Hood JD, Meininger CJ, Ziche M, et al. VEGF upregulates eNOS message, protein, and NO production in human endothelial cells. Am J Physiol. 1998;274:H1054–8.

    CAS  PubMed  Google Scholar 

  32. Shen BQ, Lee DY, Zioncheck TF. Vascular endothelial growth factor governs nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. J Biol Chem. 1999;274:33057–63.

    Article  CAS  PubMed  Google Scholar 

  33. Zou AP, Cowley AW. Role of nitric oxide in the control of renal function and salt sensitivity. Curr Hypertens Rep. 1999;1:178–86.

    Article  CAS  PubMed  Google Scholar 

  34. Horowitz JR, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol. 1997;17:2793–800.

    Article  CAS  PubMed  Google Scholar 

  35. Kamba T, Tam BY, Hashizume H, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol. 2006;290:H560–76.

    Article  CAS  PubMed  Google Scholar 

  36. Inai T, Mancuso M, Hashizume H, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165:35–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Baffert F, Le T, Sennino B, et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol. 2006;290:H547–59.

    Article  CAS  PubMed  Google Scholar 

  38. Kamba T, McDonald DM. Mechanisms of adverse effects of anti- VEGF therapy for cancer. Br J Cancer. 2007;96:1788–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mourad JJ, des Guetz G, Debbabi H, Levy BI. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol. 2008;19:927–34.

    Article  PubMed  Google Scholar 

  40. Steeghs N, Gelderblom H, Roodt JO, et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14:3470–6.

    Article  CAS  PubMed  Google Scholar 

  41. Ruedemann AD. Conjunctival vessels. JAMA. 1933;101:1477–81.

    Article  Google Scholar 

  42. Serne EH, Gans ROB, ter Maaten JC, et al. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38:238–42.

    Article  CAS  PubMed  Google Scholar 

  43. Antonios TFT, Singer DRJ, Markandu ND, et al. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33:998–1001.

    Article  CAS  PubMed  Google Scholar 

  44. Prasad A, Dunnill GS, Mortimer PS, MacGregor GA. Capillary rarefaction in the forearm skin in essential hypertension. J Hypertens. 1995;13:265–8.

    CAS  PubMed  Google Scholar 

  45. Lee PC, Salyapongse AN, Bragdon GA, et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol. 1999;277:H1600–8.

    CAS  PubMed  Google Scholar 

  46. Kiefer FN, Misteli H, Kalak N, et al. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension. Blood Press. 2002;11:116–24.

    Article  CAS  PubMed  Google Scholar 

  47. Prewitt RL, Hashimoto H, Stacy DL. Structural and functional rarefaction of microvessels in hypertension. In: Lee R, editor. Blood vessel changes in hypertension: structure and function. Boca Raton: CRC Press; 1990. p. 71–90.

    Google Scholar 

  48. Steeghs N, Rabelink TJ, op ‘t Roodt J, et al. Reversibility of capillary density after discontinuation of bevacizumab treatment. Ann Oncol. 2010;21:1100–5.

    Article  CAS  PubMed  Google Scholar 

  49. Franklin PH, Banfor PN, Tapang P, et al. Effect of the multitargeted receptor tyrosine kinase inhibitor, ABT-869, on blood pressure in conscious rats and mice: reversal with antihypertensive agents and effect on tumor growth inhibition. J Pharmacol Exp Ther. 2009;329:928–37.

    Article  CAS  PubMed  Google Scholar 

  50. Bono P, Elfving H, Utriainen T, Osterlund P, Saarto T, Alanko T, et al. Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann Oncol. 2009;20:393–4.

    Article  CAS  PubMed  Google Scholar 

  51. Levy BI. Blood pressure as a potential biomarker of the efficacy angiogenesis inhibitor. Ann Oncol. 2009;20:200–3.

    Article  CAS  PubMed  Google Scholar 

  52. Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med. 2008;233:627–50.

    Article  CAS  Google Scholar 

  53. Faeh D, Gutzwiller F, Bopp M, Swiss National Cohort Study Group. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation. 2009;120:495–501.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard I. Lévy MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Mourad, JJ., Silvestre, JS., Lévy, B.I. (2014). Hypoxia, Arterial Blood Pressure, and Microcirculation. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics