Skip to main content

Modeling Shapes with Higher-Order Graphs: Methodology and Applications

  • Chapter
Shape Perception in Human and Computer Vision

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Extrinsic factors such as object pose and camera parameters are a main source of shape variability and pose an obstacle to efficiently solving shape matching and inference. Most existing methods address the influence of extrinsic factors by decomposing the transformation of the source shape (model) into two parts: one corresponding to the extrinsic factors and the other accounting for intra-class variability and noise, which are solved in a successive or alternating manner. In this chapter, we consider a methodology to circumvent the influence of extrinsic factors by exploiting shape properties that are invariant to them. Based on higher-order graph-based models, we implement such a methodology to address various important vision problems, such as non-rigid 3D surface matching and knowledge-based 3D segmentation, in a one-shot optimization scheme. Experimental results demonstrate the superior performance and potential of this type of approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The shape can also be associated with a texture model if photometric information is available.

  2. 2.

    When a bijective mapping between S 1R 3 and S 2R 3 is required, the feasible solution can be defined as all diffeomorphisms that map S 1 to S 2.

  3. 3.

    Photometric variation can be caused by the change of illumination. We mostly focus on the geometric aspect here but the extension to the photometric aspect can be done analogously.

  4. 4.

    The definition of the intrinsically equivalence depends on the problem to be addressed. For instance, when dealing with nonrigid 3D surface matching, we often assume that two surfaces differing by an isometric transformation (with geodesic metrics) are intrinsically equivalent.

References

  1. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113

    Article  Google Scholar 

  2. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  3. Berg AC, Berg TL, Malik J (2005) Shape matching and object recognition using low distortion correspondences. In: CVPR

    Google Scholar 

  4. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Nashua

    MATH  Google Scholar 

  5. Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  6. Bishop CM (2006) Pattern recognition and machine learning. Information science and statistics. Springer, Berlin

    MATH  Google Scholar 

  7. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: SIGGRAPH

    Google Scholar 

  8. Bookstein FL (1989) Principal Warps:Thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585

    Article  MATH  Google Scholar 

  9. Boros E, Hammer PL, Sun X (1991) Network flows and minimization of quadratic pseudo-Boolean functions. Technical report, RRR 17-1991, RUTCOR research report

    Google Scholar 

  10. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  11. Breiman L (2001) Random forests. Mach Learn 54(2):5–32

    Article  MathSciNet  Google Scholar 

  12. Bronstein AM, Bronstein MM, Kimmel R (2006) Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc Natl Acad Sci USA 103(5):1168–1172

    Article  MathSciNet  MATH  Google Scholar 

  13. Bronstein AM, Bronstein MM, Kimmel R, Mahmoudi M, Sapiro G (2010) A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape. Int J Comput Vis 89(2–3):266–286

    Article  Google Scholar 

  14. do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice Hall, New York

    MATH  Google Scholar 

  15. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  16. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  17. Duchenne O, Bach F, Kweon I, Ponce J (2009) A tensor-based algorithm for high-order graph matching. In: CVPR

    Google Scholar 

  18. Essafi S, Langs G, Deux JF, Rahmouni A, Bassez G, Paragios N (2009) Wavelet-driven knowledge-based MRI calf muscle segmentation. In: ISBI

    Google Scholar 

  19. Farkas HM, Kra I (2004) Riemann surfaces. Springer, Berlin

    Google Scholar 

  20. Glocker B, Komodakis N, Tziritas G, Navab N, Paragios N (2008) Dense image registration through MRFs and efficient linear programming. Med Image Anal 12(6):731–741

    Article  Google Scholar 

  21. Gu L, Kanade T (2006) 3D alignment of face in a single image. In: CVPR

    Google Scholar 

  22. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  23. Ishikawa H (2009) Higher-order clique reduction in binary graph cut. In: CVPR

    Google Scholar 

  24. Kohli P, Pawan Kumar M, Torr PHS (2009) P3 & beyond: move making algorithms for solving higher order functions. IEEE Trans Pattern Anal Mach Intell 31(9):1645–1656

    Article  Google Scholar 

  25. Kolmogorov V (2006) Convergent tree-reweighted message passing for energy minimization. IEEE Trans Pattern Anal Mach Intell 28(10):1568–1583

    Article  Google Scholar 

  26. Kolmogorov V, Rother C (2007) Minimizing nonsubmodular functions with graph cuts—a review. IEEE Trans Pattern Anal Mach Intell 29(7):1274–1279

    Article  Google Scholar 

  27. Komodakis N, Paragios N, Tziritas G (2011) MRF energy minimization and beyond via dual decomposition. IEEE Trans Pattern Anal Mach Intell 33(3):531–552

    Article  Google Scholar 

  28. Leordeanu M, Hebert M (2005) A spectral technique for correspondence problems using pairwise constraints. In: ICCV

    Google Scholar 

  29. Lin L, Liu X, Zhu SC (2010) Layered graph matching with composite cluster sampling. IEEE Trans Pattern Anal Mach Intell 32(8):1426–1442

    Article  Google Scholar 

  30. Lipman Y, Funkhouser T (2009) Möbius voting for surface correspondence. ACM Trans Graph 28(3):72:1–72:12

    Article  Google Scholar 

  31. Qiu H, Hancock ER (2007) Clustering and embedding using commute times. IEEE Trans Pattern Anal Mach Intell 29(11):1873–1890

    Article  Google Scholar 

  32. Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: International conference on 3-d digital imaging and modeling

    Google Scholar 

  33. Rustamov RM (2007) Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: SGP, pp 225–233

    Google Scholar 

  34. Seghers D, Loeckx D, Maes F, Vandermeulen D, Suetens P (2007) Minimal shape and intensity cost path segmentation. IEEE Trans Med Imag 26(8):1115–1129

    Article  Google Scholar 

  35. Sun J, Ovsjanikov M, Guibas LJ (2009) A concise and provably informative multi-scale signature. based on heat diffusion. Comput Graph Forum 28:1383–1392

    Article  Google Scholar 

  36. Sundaramoorthi G, Petersen P, Varadarajan VS, Soatto S (2009) On the set of images modulo viewpoint and contrast changes. In: CVPR

    Google Scholar 

  37. Torr PHS (2003) Solving Markov random fields using semi definite programming. In: International workshop on artificial intelligence and statistics

    Google Scholar 

  38. Torresani L, Kolmogorov V, Rother C (2008) Feature correspondence via graph matching: models and global optimization. In: ECCV

    Google Scholar 

  39. Wang C, Teboul O, Michel F, Essafi S, Paragios N (2010) 3D knowledge-based segmentation using pose-invariant higher-order graphs. In: MICCAI

    Google Scholar 

  40. Wang C, Zeng Y, Simon L, Kakadiaris I, Samaras D, Paragios N (2011) Viewpoint invariant 3D landmark model inference from monocular 2D images using higher-order priors. In: ICCV

    Google Scholar 

  41. Xiang B, Wang C, Deux JF, Rahmouni A, Paragios N (2012) 3D cardiac segmentation with pose-invariant higher-order MRFs. In: ISBI

    Google Scholar 

  42. Zeng Y, Wang C, Wang Y, Gu X, Samaras D, Paragios N (2010) Dense non-rigid surface registration using high-order graph matching. In: CVPR

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wang, C., Zeng, Y., Samaras, D., Paragios, N. (2013). Modeling Shapes with Higher-Order Graphs: Methodology and Applications. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_31

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics