Skip to main content

Detecting, Representing and Attending to Visual Shape

  • Chapter
Shape Perception in Human and Computer Vision

Abstract

The importance of shape detection, representation and recognition is not disputed by any relevant discipline and is an integral part of visual perception by both animals and machines. However, to date, there is no comprehensive theoretical framework of how to deal with visual shape. Here, we present the beginnings of such a framework and attempt to integrate the means to detect, represent and recognize shapes, specifically two-dimensional silhouettes. Of note is the inclusion of an attentional scheme primarily because there is growing evidence that human perception involves such a capacity yet how this might occur is virtually unexamined. Secondarily, the ability to attend to shape and shape elements is central to our ability to not only recognize shapes and objects, but also to reason about shape, solve problems involving shape, manipulate shapes and perform spatial reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61:183–193

    Article  Google Scholar 

  2. Bishop P, Kato H, Orban G (1980) Direction selective cells in complex family in cat striate cortex. J Neurophysiol 43:1266–1283

    Google Scholar 

  3. Blum H (1962) An associative machine for dealing with the visual field and some of its biological implications. Air Force Cambridge Research Labs, L G Hanscom Field, Mass, Feb 1962

    Google Scholar 

  4. Blum H (1967) A transformation for extracting descriptors of shape. In: Wathen-Dunn W (ed) Models for the perception of speech and visual forms. MIT Press, Cambridge, pp 362–380

    Google Scholar 

  5. Booth M, Rolls E (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8(6):510–523

    Article  Google Scholar 

  6. Boynton G, Hegde J (2004) Visual cortex: the continuing puzzle of area v2. Curr Biol 14(13):R523–R524

    Article  Google Scholar 

  7. Brincat S, Connor C (2004) Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nat Neurosci 7(8):880–886

    Article  Google Scholar 

  8. Cant JS, Goodale MA (2011) Scratching beneath the surface: new insights into the functional properties of the lateral occipital area and parahippocampal place area. J Neurosci 31(22):8248–8258

    Article  Google Scholar 

  9. Clements DH, Sarama J (2000) What do Children Know about Shapes? In: Teaching children mathematics. April 2000, The National Council of Teachers of Mathematics, Inc, pp 482–488

    Google Scholar 

  10. Corbetta M, Miezin F, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11(9):2393–2402

    Google Scholar 

  11. Dobbins A (1992) Difference models of visual cortical Neurons. Doctoral dissertation, Department of Electrical Engineering, McGill University

    Google Scholar 

  12. Dudek G, Tsotsos JK (1997) Shape representation and recognition from multiscale curvature. Comput Vis Image Underst 68(2):170–189

    Article  Google Scholar 

  13. Dudek G, Tsotsos JK (1991) Shape representation and recognition from curvature. In: Proc computer vision and pattern recognition, pp 35–41

    Google Scholar 

  14. Dudek G, Tsotsos JK (1990) Recognizing planar curves using curvature-tuned smoothing. In: Proceedings 10th international conference on pattern recognition, vol 1, pp 130–135

    Chapter  Google Scholar 

  15. Durand JB, Nelissen K, Joly O, Wardak C, Todd J, Norman F, Janssen P, Vanduffel W, Orban G (2007) Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 55:493–505

    Article  Google Scholar 

  16. Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR, vol 2, p 264

    Google Scholar 

  17. Fiser J, Aslin RN (2002) Statistical learning of new visual feature combinations by infants. Proc Natl Acad Sci USA 99:15822–15826

    Article  Google Scholar 

  18. Fukushima K (1980) Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202

    Article  MATH  Google Scholar 

  19. Gershfokk-Stowe L, Smith LB (2004) Shape and the first hundred nouns. Child Dev 75(4):1098–1114

    Article  Google Scholar 

  20. Han X, Chen Y, Ruan X (2010) Image recognition by learned linear subspace of combined bag-of-features and low-level features. In: ICIP

    Google Scholar 

  21. Hawken M, Parker A (1987) Spatial properties of neurons in the monkey striate cortex. Proc R Soc Lond B, Biol Sci 231:251–288

    Article  Google Scholar 

  22. Hopf J-M, Boehler CN, Schoenfeld MA, Heinze H-J, Tsotsos JK (2010) The spatial profile of the focus of attention in visual search: insights from MEG recordings. Vis Res 50(14):1312–1320

    Article  Google Scholar 

  23. Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Google Scholar 

  24. Hubel D, Wiesel T (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Google Scholar 

  25. Hummel JE, Stankiewicz BJ (1998) Two roles for attention in shape perception: a structural description model of visual scrutiny. Vis Cogn 5:49–79

    Article  Google Scholar 

  26. Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area v2 of macaque monkeys. J Neurosci 24(13):3313–3324

    Article  Google Scholar 

  27. James TW, Stevenson RA, Kim S, VanDerKlok RM, James KH (2011) Shape from sound: evidence for a shape operator in the lateral occipital cortex. Neuropsychologia 49:1807–1815

    Article  Google Scholar 

  28. Janssen P, Vogels R, Orban G (2000) Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science 288:2054–2056

    Article  Google Scholar 

  29. Janssen P, Vogels R, Liu Y, Orban G (2001) Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. J Neurosci 21:9419–9429

    Google Scholar 

  30. Jones SS, Smith LB (1993) The place of perception in children’s concepts. Cogn Dev 8:113–139

    Article  Google Scholar 

  31. Kato H, Bishop P, Orban G (1978) Hypercomplex and simple/complex cells classifications in cat striate cortex. J Neurophysiol 41:1071–1095

    Google Scholar 

  32. Koenderink JJ, van Doorn AJ (1980) Photomettric invariants related to solid shape. Opt Acta 27(7):981–996

    Article  Google Scholar 

  33. Kruijne W, Tsotsos JK (2011) Visuo-cognitive routines: reinterpreting the theory of visual routines as a framework for visual cognition. Technical Report CSE-2011-05, Dept of Computer Science & Engineering, York University

    Google Scholar 

  34. Leung B (2004) Component-based car detection in street scene IMages. PhD thesis, Massachusetts Institute of Technology, Dept of Electrical Engineering and Computer Science

    Google Scholar 

  35. Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11):1297–1300

    Article  MathSciNet  Google Scholar 

  36. Merigan W, Pham H (1998) 4 lesions in macaques affect both single and multiple-viewpoint shape discriminations. Vis Neurosci 15:359–367

    Article  Google Scholar 

  37. Orban G, Kato H, Bishop P (1979) Dimensions and properties of end-zone inhibitory areas of hypercomplex cells in cat striate cortex. J Neurophysiol 42:833–849

    Google Scholar 

  38. Orban G, Kato H, Bishop P (1979) End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. J Neurophysiol 42:818–832

    Google Scholar 

  39. Orban G, Janssen P, Vogels R (2006) Extracting 3D structure from disparity. Trends Neurosci 29:466–473

    Article  Google Scholar 

  40. Pasupathy A, Connor C (1999) Responses to contour features in macaque area V4. J Neurophysiol 82(5):2490–2502

    Google Scholar 

  41. Pasupathy A, Connor C (2001) Shape representation in area V4: position-specific tuning for boundary conformation. J Neurophysiol 86(5):2505–2519

    Google Scholar 

  42. Pasupathy A, Connor C (2002) Population coding of shape in area V4. Nat Neurosci 5(12):1332–1338

    Article  Google Scholar 

  43. Rektorys K (1980) Variational methods in mathematics, science and engineering. Reidel, Dordrecht

    MATH  Google Scholar 

  44. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025

    Article  Google Scholar 

  45. Rodríguez-Sánchez AJ, Simine E, Tsotsos JK (2007) Attention and visual search. Int J Neural Syst 17(4):275–288

    Article  Google Scholar 

  46. Rodríguez-Sánchez A (2010) Intermediate visual representations for attentive recognition systems. PhD, York University

    Google Scholar 

  47. Rodriguez-Sanchez A, Tsotsos JK (2011) The importance of intermediate representations for the modeling of 2D shape detection: endstopping and curvature tuned computations. In: Proc IEEE computer vision and pattern recognition, Colorado Springs, CO

    Google Scholar 

  48. Rodríguez-Sánchez A, Tsotsos J (2012) The roles of endstopped and curvature tuned computations in a hierarchical representation of 2D shape. PLoS ONE 7(8):1–13

    Article  Google Scholar 

  49. Samuelson LK, Smith LB (2005) They call it like they see it: spontaneous naming and attention to shape. Dev Sci 8(2):182–198

    Article  Google Scholar 

  50. Sereno AB, Amador SC (2006) Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. J Neurophysiol 95:1078–1098

    Article  Google Scholar 

  51. Serre T, Wolf L, Bileschi S, Riesenhuber M (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426

    Article  Google Scholar 

  52. Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by visual cortex. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  53. Siddiqi K, Shokoufandeh A, Dickinson SJ, Zucker SW (1999) Shock graphs and shape matching. Int J Comput Vis 35(1):13–32

    Article  Google Scholar 

  54. Sigurdardottir HM, Michalak SM, Sheinberg DL (2012) Shape beyond recognition: how object form biases spatial attention and motion perception. J Vis 12(9):665

    Article  Google Scholar 

  55. Smith LB, Jones SS, Landau B, Gershkoff-Stowe L, Samuelson L (2002) Object name learning provides on-the-job training for attention. Psychol Sci 13(1):13–19

    Article  Google Scholar 

  56. Spelke E (2000) Principles of object perception. Cogn Sci 14:29–56

    Article  Google Scholar 

  57. Tanaka K (1996) Representation of visual features of objects in the inferotemporal cortex. Neural Netw 9(8):1459–1475

    Article  MATH  Google Scholar 

  58. Terzopoulos D (1986) Regularization of inverse visual problems involving discontinuities. IEEE Trans Pattern Anal Mach Intell 8(4):413–424

    Article  Google Scholar 

  59. Todd JT (2004) The visual perception of 3D shape. Trends Cogn Sci 8(3):115–121

    Article  Google Scholar 

  60. Tsotsos JK (2011) A computational perspective on visual attention. MIT Press, Cambridge

    Google Scholar 

  61. Ullman S (1984) Visual routines. Cognition 18(1–3):97–159

    Article  Google Scholar 

  62. Verhoef BE, Vogels R, Janssen P (2010) Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception. Curr Biol 20(10):909–913

    Article  Google Scholar 

  63. von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224(4654):1260–1262

    Article  Google Scholar 

  64. Yamane Y, Carlson E, Bowman K, Wang Z, Connor C (2008) A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat Neurosci 11:1352–1360

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada and Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Rodríguez-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Rodríguez-Sánchez, A.J., Dudek, G.L., Tsotsos, J.K. (2013). Detecting, Representing and Attending to Visual Shape. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_29

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics