Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Visual recognition requires a robust representation of typical object characteristics. Among all visual characteristics, shape plays a special role. It exhibits crucial invariance properties and captures the holistic structure of objects. However, shape cannot be extracted directly from an image, as it is an emergent property. Thus, representing shape is challenging, since it is related to several key problems of computer vision, such as grouping, segmentation, and correspondence problems. This paper reviews the development of shape in object recognition so far, discusses the reasons for the underlying developmental trends, and presents some promising recent contributions that point towards more accurate models of object structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antic B, Ommer B (2011) Video parsing for abnormality detection. In: ICCV

    Google Scholar 

  2. Attneave F (1954) Some informational aspects of visual perception. Psych Rev 61(3)

    Google Scholar 

  3. Basri R, Jacobs D (1995) Recognition using region correspondences. Int J Comput Vis 25:8–13

    Google Scholar 

  4. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  5. Berg AC, Berg TL, Malik J (2005) Shape matching and object recognition using low distortion correspondence. In: CVPR, pp 26–33

    Google Scholar 

  6. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  Google Scholar 

  7. Binford TO (1971) Visual perception by computer. In: IEEE conf on systems and control

    Google Scholar 

  8. Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Stat Sci 1(2):181–222

    Article  MATH  Google Scholar 

  9. Bourdev L, Malik J (2009) Poselets: body part detectors trained using 3d human pose annotations. In: ICCV

    Google Scholar 

  10. Brooks RA (1981) Symbolic reasoning among 3-d models and 2-d images. Artif Intell 17(1–3):285–348

    Article  Google Scholar 

  11. Brunelli R, Poggio T (1993) Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell 15(10):1042–1052. http://doi.ieeecomputersociety.org/10.1109/34.254061

    Article  Google Scholar 

  12. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: ECCV

    Google Scholar 

  13. Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: ECCV. Workshop on statistical learning in computer vision

    Google Scholar 

  14. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886–893

    Google Scholar 

  15. Deselaers T, Ferrari V (2010) Global and efficient self-similarity for object classification and detection. In: CVPR, pp 1633–1640

    Google Scholar 

  16. Dickinson SJ, Pentland A, Rosenfeld A (1992) 3-D shape recovery using distributed aspect matching. IEEE Trans Pattern Anal Mach Intell 14(2):174–198

    Article  Google Scholar 

  17. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    MATH  Google Scholar 

  18. Eigenstetter A, Ommer B (2012) Visual recognition using embedded feature selection for curvature self-similarity. In: NIPS

    Google Scholar 

  19. Everingham M, Zisserman A, Williams CKI, Van Gool L (2006) PASCAL VOC’06

    Google Scholar 

  20. Felzenszwalb P, Mcallester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: CVPR

    Google Scholar 

  21. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition. Int J Comput Vis 61(1):55–79

    Article  Google Scholar 

  22. Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: CVPR, pp 264–271

    Google Scholar 

  23. Fidler S, Boben M, Leonardis A (2010) A coarse-to-fine taxonomy of constellations for fast multi-class object detection. In: ECCV

    Google Scholar 

  24. Fischler MA, Elschlager RA (1973) The representation and matching of pictorial structures. IEEE Trans Comput c-22(1):67–92

    Article  Google Scholar 

  25. Guzman A (1971) Analysis of curved line drawings using context and global information. Mach Intell 6:325–376

    Google Scholar 

  26. Hu MK (1962) Visual pattern recognition by moment invariants. Trans Inf Theory 8(2)

    Google Scholar 

  27. Huttenlocher DP, Ullman S (1987) Object recognition using alignment. In: ICCV

    Google Scholar 

  28. Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nature 290(5802):91–97

    Article  Google Scholar 

  29. Kendall D (1984) Shape manifolds, procrustean metrics and complex projective spaces. Bull Lond Math Soc 16(2):81–121

    Article  MathSciNet  MATH  Google Scholar 

  30. Koenderink JJ, van Doorn AJ (1976) The singularities of the visual mapping. Biol Cybern 24:51–59

    Article  MATH  Google Scholar 

  31. Lades M, Vorbrüggen JC, Buhmann JM, Lange J, von der Malsburg C, Würtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42:300–311

    Article  Google Scholar 

  32. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp 2169–2178

    Google Scholar 

  33. Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. In: ECCV. Workshop on stat learn in comp vision

    Google Scholar 

  34. Lowe D (1999) Object recognition from local scale-invariant features. In: ICCV

    Google Scholar 

  35. Lowe DG (1985) Perceptual organization and visual recognition. Kluwer, Amsterdam

    Book  Google Scholar 

  36. Maji S, Malik J (2009) Object detection using a max-margin hough transform. In: CVPR

    Google Scholar 

  37. Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  38. Monroy A, Ommer B (2012) Beyond bounding-boxes: learning object shape by model-driven grouping. In: ECCV, pp 580–593

    Google Scholar 

  39. Murase H, Nayar SK (1995) Visual learning and recognition of 3-d objects from appearance. Int J Comput Vis 14(1):5–24

    Article  Google Scholar 

  40. Ohta Y, Kanade T, Sakai T (1978) An analysis system for scenes containing objects with substructures. In: Intl joint conf on pattern recognition, pp 752–754

    Google Scholar 

  41. Ommer B, Buhmann JM (2006) Learning compositional categorization models. In: ECCV. LNCS, vol 3953, pp 316–329

    Google Scholar 

  42. Ommer B, Buhmann JM (2010) Learning the compositional nature of visual object categories for recognition. IEEE Trans Pattern Anal Mach Intell 32(3):501–516

    Article  Google Scholar 

  43. Ommer B, Malik J (2009) Multi-scale object detection by clustering lines. In: ICCV

    Google Scholar 

  44. Opelt A, Pinz A, Zisserman A (2006) Incremental learning of object detectors using a visual shape alphabet. In: CVPR, pp 3–10

    Google Scholar 

  45. Revonsuo A, Newman J (1999) Binding and consciousness. Conscious Cogn 8:123–127

    Article  Google Scholar 

  46. Roberts LG (1963) Machine perception of three-dimensional solids. PhD thesis, MIT

    Google Scholar 

  47. Schlecht J, Ommer B (2011) Contour-based object detection. In: BMVC

    Google Scholar 

  48. Schneiderman H, Kanade T (1998) Probabilistic modeling of local appearance and spatial relationships for object recognition. In: CVPR, pp 45–51

    Google Scholar 

  49. Sivic J, Russell BC, Efros AA, Zisserman A, Freeman WT (2005) Discovering objects and their localization in images. In: ICCV, pp 370–377

    Google Scholar 

  50. Small CG (1996) The statistical theory of shape. Springer, New York

    Book  MATH  Google Scholar 

  51. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22:1349–1380

    Article  Google Scholar 

  52. Thompson DW (1917) On growth and form. Dover, New York

    Google Scholar 

  53. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  54. Viola PA, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR, pp 511–518

    Google Scholar 

  55. Wertheimer M (1922) Untersuchungen zur Lehre von der Gestalt I. Prinzipielle Bemerkungen. Psychol Forsch 1:47–58

    Article  Google Scholar 

  56. Yarlagadda P, Monroy A, Ommer B (2010) Voting by grouping dependent parts. In: ECCV, pp 197–210

    Google Scholar 

  57. Yarlagadda P, Ommer B (2012) From meaningful contours to discriminative object shape. In: ECCV

    Google Scholar 

  58. Yuille AL, Hallinan PW, Cohen DS (1992) Feature extraction from faces using deformable templates. Int J Comput Vis 8(2):99–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Ommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ommer, B. (2013). The Role of Shape in Visual Recognition. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics