Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 2776 Accesses

Abstract

3D shape may be best understood in terms of the 2D image changes that occur when an observer moves with respect to a surface rather than supposing the visual system relies on a 3D coordinate frame. The same may be true of object location. In fact, a view-based representation applicable to all the images visible from a many vantage points (a ‘universal primal sketch’) may be a better way to describe the visual system’s stored knowledge about surface shape and object location than object-, head-, body- or world-centered 3D representations. This chapter describes a hierarchical encoding of image features based on the MIRAGE algorithm (Watt in J. Opt. Soc. Am. A 4:2006–2021, 1987) and discusses how this could be extended to survive head movements. Psychophysical findings are discussed that appear paradoxical if the brain generates a consistent 3D representation of surfaces or object location whereas they are simple to explain if the visual system only computes relevant information once the task is defined. The minimum requirements for a useful visual representation of 3D shape and location do not include internal consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watt RJ (1987) Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. J Opt Soc Am A 4:2006–2021

    Article  Google Scholar 

  2. Glennerster A, Hansard ME, Fitzgibbon AW (2001) Fixation could simplify, not complicate, the interpretation of retinal flow. Vis Res 41:815–834

    Article  Google Scholar 

  3. Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye-movements. Science 255:90–92

    Article  Google Scholar 

  4. Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684

    Article  Google Scholar 

  5. Bridgeman B, van der Heijden AHC, Velichovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–292

    Article  Google Scholar 

  6. Melcher D (2007) Predictive remapping of visual features precedes saccadic eye movements. Nat Neurosci 10(7):903–907

    Article  Google Scholar 

  7. Burr DC, Morrone MC (2011) Spatiotopic coding and remapping in humans. Philos Trans R Soc Lond B, Biol Sci 366(1564):504–515

    Article  Google Scholar 

  8. Irani M, Anandan P (1998) Video indexing based on mosaic representation. Proc IEEE 86:905–921

    Article  Google Scholar 

  9. Brown M, Lowe DG (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74(1):59–73

    Article  Google Scholar 

  10. Koenderink JJ, van Doorn AJ (1991) Affine structure from motion. J Opt Soc Am A 8:377–385

    Article  Google Scholar 

  11. Mitchison G (1988) Planarity and segmentation in stereoscopic matching. Perception 17(6):753–782

    Article  Google Scholar 

  12. Glennerster A, McKee SP (2004) Sensitivity to depth relief on slanted surfaces. J Vis 4:378–387

    Article  Google Scholar 

  13. Hogervorst MA, Glennerster A, Eagle RA (2003) Pooling speed information in complex tasks: estimation of average speed and detection of non-planarity. J Vis 3:464–485

    Article  Google Scholar 

  14. Mitchison GJ, McKee SP (1987) The resolution of ambiguous stereoscopic matches by interpolation. Vis Res 27:285–294

    Article  Google Scholar 

  15. Mitchison GJ, McKee SP (1990) Mechanisms underlying the anisotropy of stereoscopic tilt perception. Vis Res 30:1781–1791

    Article  Google Scholar 

  16. Cagenello R, Rogers BJ (1993) Anisotropies in the perception of stereoscopic surfaces—the role of orientation disparity. Vis Res 33:2189–2201

    Article  Google Scholar 

  17. Bradshaw MF, Rogers BJ (1999) Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vis Res 39:3049–3056

    Article  Google Scholar 

  18. Glennerster A, McKee SP, Birch MD (2002) Evidence of surface-based processing of binocular disparity. Curr Biol 12:825–828

    Article  Google Scholar 

  19. Petrov Y, Glennerster A (2004) The role of a local reference in stereoscopic detection of depth relief. Vis Res 44:367–376

    Article  Google Scholar 

  20. Watt R, Morgan M (1983) Mechanisms responsible for the assessment of visual location: theory and evidence. Vis Res 23:97–109

    Article  Google Scholar 

  21. Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc Lond B, Biol Sci 204:301–328

    Article  Google Scholar 

  22. Glennerster A (1998) D max for stereopsis and motion in random dot displays. Vis Res 38:925–935

    Article  Google Scholar 

  23. Glennerster A, Hansard ME, Fitzgibbon AW (2009) View-based approaches to spatial representation in human vision. Lect Notes Comput Sci 5064:193–208

    Article  Google Scholar 

  24. Watt RJ (1988) Visual processing: computational, psychophysical and cognitive research. Erlbaum, Hove

    Google Scholar 

  25. O’Regan JK, Noë A (2001) A sensori-motor account of vision and visual consciousness. Behav Brain Sci 24:939–1031

    Article  Google Scholar 

  26. Burbeck CA (1987) Position and spatial frequency in large scale localisation judgements. Vis Res 27:417–427

    Article  Google Scholar 

  27. Glennerster A, Rogers BJ, Bradshaw MF (1996) Stereoscopic depth constancy depends on the subject’s task. Vis Res 36:3441–3456

    Article  Google Scholar 

  28. Johnston EB (1991) Systematic distortions of shape from stereopsis. Vis Res 31:1351–1360

    Article  Google Scholar 

  29. Tittle JS, Todd JT, Perotti VJ, Norman JF (1995) A hierarchical analysis of alternative representations in the perception of 3-d structure from motion and stereopsis. J Exp Psychol Hum Percept Perform 21:663–678

    Article  Google Scholar 

  30. Svarverud E, Gilson S, Glennerster A (2012) A demonstration of ‘broken’ visual space. PLoS ONE 7:e33782. doi:10.1371/journal.pone.0033782

    Article  Google Scholar 

  31. Glennerster A, Tcheang L, Gilson SJ, Fitzgibbon AW, Parker AJ (2006) Humans ignore motion and stereo cues in favour of a fictional stable world. Curr Biol 16:428–443

    Article  Google Scholar 

  32. Rauschecker AM, Solomon SG, Glennerster A (2006) Stereo and motion parallax cues in human 3d vision: can they vanish without trace? J Vis 6:1471–1485

    Article  Google Scholar 

  33. Svarverud E, Gilson SJ, Glennerster A (2010) Cue combination for 3d location judgements. J Vis 10:1–13. doi:10.1167/10.1.5

    Google Scholar 

  34. Erkelens CJ, Collewijn H (1985) Motion perception during dichoptic viewing of moving random-dot stereograms. Vis Res 25:583–588

    Article  Google Scholar 

  35. Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

Download references

Acknowledgement

Supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Glennerster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Glennerster, A. (2013). Representing 3D Shape and Location. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics