H Design of Structured Controllers

  • Rosario Toscano
Part of the Advances in Industrial Control book series (AIC)


In Chap. 7, we consider the design of fixed structure controllers for uncertain systems in the H framework. Although the presented design procedures apply for any kind of structured controller, we focus mainly on the most widely used of them which is the PID. Two design approaches will be considered: the mixed sensitivity method and the H loop-shaping design procedure. Using these methods, the resulting PID design problem is formulated as an inherently non-convex optimization problem. The resulting tuning method is applicable both to stable and unstable systems, without any limitation concerning the order of the process to be controlled. Various design examples are presented to give practical insights into the methods presented.


Transfer Matrix Disturbance Rejection Structure Controller Mixed Sensitivity Relative Gain Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 5.
    Apkarian P, Bompart V, Noll D (2007) Nonsmooth structured control design with application to PID loop-shaping of a process. Int J Robust Nonlinear Control 17(14):1320–1342 MathSciNetMATHCrossRefGoogle Scholar
  2. 8.
    Aström KJ, Hägglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, Research Triangle Park Google Scholar
  3. 10.
    Balas GJ, Doyle JC, Glover K, Packard A, Smith R (1993) μ-Analysis and synthesis toolbox users’ guide for use with MATLAB. Mathworks, Natick Google Scholar
  4. 18.
    Bianchi FD, Mantz RJ, Christiansen CF (2008) Multivariable PID control with set-point weighting via BMI optimisation. Automatica 44:472–478 MathSciNetCrossRefGoogle Scholar
  5. 30.
    Cao YY, Lam J, Sun YX (1998) Static output feedback stabilization: an ILMI approach. Automatica 34(12):1641–1645 MATHCrossRefGoogle Scholar
  6. 53.
    Francis BA (1987) A course in H control theory. Lecture notes in control and information science. Springer, Berlin MATHCrossRefGoogle Scholar
  7. 54.
    Genc AU (2000) A state-space algorithm for designing H loop shaping PID controllers. Tech rep, Cambridge University, Cambridge, UK Google Scholar
  8. 63.
    Green M, Limebeer DJN (1995) Linear robust control. Prentice Hall information and system sciences MATHGoogle Scholar
  9. 68.
    Ho M (2003) Synthesis of \(\mathcal{H}_{\infty}\) PID controllers: a parametric approach. Automatica 36:1069–1075 CrossRefGoogle Scholar
  10. 83.
    Lanzon A (2005) Weight optimisation in H-infinity loop-shaping. Automatica 41:1201–1208 MathSciNetMATHCrossRefGoogle Scholar
  11. 86.
    Liu GP, Yang JB, Whidborne JF (2003) Multiobjective optimisation and control. Research Studies Press, Baldock Google Scholar
  12. 95.
    McFarlane D, Glover K (1992) A loop shaping design procedure using H synthesis. IEEE Trans Autom Control 37(6):759–769 MathSciNetMATHCrossRefGoogle Scholar
  13. 98.
    Mourier M, Toscano R, Hamdi H (2004) Commande H d’un axe de machine outil équipé d’un moteur linéaire. In: 3ème assises machines et usinage grande vitesse, Clermont-Ferrand, 10–11 mars 2004, pp 203–212 Google Scholar
  14. 104.
    O’Dwyer A (2006) Handbook of PI and PID controller tuning rules, 2nd edn. Imperial College Press, London CrossRefGoogle Scholar
  15. 117.
    Saeki M (2006) Fixed structure PID controller design for standard \(\mathcal{H}_{\infty}\) control problem. Automatica 42:93–100 MathSciNetMATHCrossRefGoogle Scholar
  16. 123.
    Skogestad S, Postlethwaite I (2001) Multivariable feedback control: analysis and design. Wiley, New York Google Scholar
  17. 142.
    Vinnicombe G (2001) Uncertainty and feedback: H loop shaping and the ν-gap metric. Imperial College Press, London MATHGoogle Scholar
  18. 143.
    Visioli A (2006) Practical PID control. Springer, Berlin MATHGoogle Scholar
  19. 151.
    Zames G (1981) Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans Autom Control AC-26:301–320 MathSciNetCrossRefGoogle Scholar
  20. 152.
    Zheng F, Wang Q, Lee T (2002) On the design of multivariable PID controllers via LMI approach. Automatica 38:517–526 MATHCrossRefGoogle Scholar
  21. 154.
    Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, New York MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rosario Toscano
    • 1
  1. 1.Laboratoire de Tribologie et DynamiqueEcole Nat. d’Ingenieurs de Saint-EtienneSaint-EtienneFrance

Personalised recommendations