Skip to main content

Tracking Explicit Model Predictive Controllers for Low-Level Control Applications

  • Chapter
Case Studies in Control

Part of the book series: Advances in Industrial Control ((AIC))

  • 1872 Accesses

Abstract

In explicit model predictive control (eMPC), the bulk of the computational load of classic MPC is performed during the off-line design stage, which enables the controller to be implemented on standard industrial automation equipment and for processes with fast dynamics, however, the computational complexity restricts applicability to small-scale control problems. The approach is appealing for a niche of control applications, but practical applications have been scarce so far. We describe one possible offset-free tracking setup that allows implementation of eMPC with relatively fast sampling and reasonably long horizons for practical applications. The applicability of eMPC is illustrated by an experimental case study of cooling-water temperature control in a biogas-fuelled combined-heat-and-power production unit, where eMPC replaces a pre-existing single-loop PID controller, with the aim of reducing unnecessary excursions of the cooling water temperature away from its set-point in the critical range near output constraints. eMPC controllers were designed using local linear analysis and tested both on a simplified simulation model and experimentally on the CHP unit. The performance improvements due to tuning of eMPC feedback action and due to the constraints-handling ability were examined, and several implementation issues related to the practical implementation of eMPC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known as multi-parametric.

  2. 2.

    Active constraints are those inequality constraints of the eMPC problem setup which in certain conditions are at the equality boundary.

  3. 3.

    LLA is strictly valid only when the process dwells in a certain region for a sufficiently long time.

  4. 4.

    Experiments with second-order models could not be carried out in the first experimental round due to numerical problems with the mpQP algorithm. After the issue was resolved, simulation analysis indicated that another set of time-consuming experiments is not justified. The simulations predict the above mentioned improvements in overall feedback performance, but do not predict a significant improvement in performance near y constraints compared to the original PI control.

References

  1. Baotić M (2002) An efficient algorithm for multi-parametric quadratic programming. Technical report AUT02-05, ETH Zürich, Institut für Automatik

    Google Scholar 

  2. Bemporad A (2006) Hybrid toolbox for real-time applications, user’s guide. Technical report, University of Siena

    Google Scholar 

  3. Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20

    Article  MathSciNet  MATH  Google Scholar 

  4. Gerkšič S (2011) Improving reliability of partition computation in explicit MPC with MPT toolbox. In: Proceedings of the 18th IFAC world congress 2011, Milano, Italy, pp 9260–9265

    Google Scholar 

  5. Gerkšič S, Pregelj B (2009) Disturbance rejection tuning of a tracking multi-parametric predictive controller. In: Proceedings of the IEEE international conference on industrial technology, Gippsland, pp 65–70

    Google Scholar 

  6. Gerkšič S, Strmčnik S, van den Boom TJJ (2008) Feedback action in predictive control: an experimental case study. Control Eng Pract 16:321–332

    Article  Google Scholar 

  7. González AH, Adam EJ, Marchetti JL (2008) Conditions for offset elimination in receding horizon controllers: a tutorial analysis. Chem Eng Process 47:2184–2194

    Article  Google Scholar 

  8. Grancharova A, Johansen TA, Kocijan J (2004) Explicit model predictive control of gas-liquid separation plant via orthogonal search tree partitioning. Comput Chem Eng 28:2481–2491

    Article  Google Scholar 

  9. Grieder P, Borrelli F, Torrisi F, Morari M (2004) Computation of the constrained infinite time linear quadratic regulator. Automatica 40:701–708

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones CN, Morari M (2006) Multiparametric linear complementarity problems. In: Proceedings of the 45th IEEE conference on decision and control, San Diego, CA, pp 5687–5692

    Chapter  Google Scholar 

  11. Kvasnica M, Grieder P, Baotić M (2005) Multi-parametric toolbox. http://control.ee.ethz.ch/mpt/

  12. Kvasnica M, Rauova I, Fikar M (2010) Automatic code generation for real-time implementation of model predictive control. In: Proceedings of IEEE international symposium on computer-aided control system design, Yokohama, pp 993–998

    Google Scholar 

  13. Limon D, Alvarado I, Alamo T, Camacho EF (2008) MPC for tracking piecewise constant references for constrained linear systems. Automatica 44:2382–2387

    Article  MathSciNet  MATH  Google Scholar 

  14. Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD conference, Taipei

    Google Scholar 

  15. Maciejowski JM (1989) Multivariable feedback design. Addison-Wesley, Wokingham

    MATH  Google Scholar 

  16. Maciejowski JM (2002) Predictive control with constraints. Prentice Hall, Harlow

    Google Scholar 

  17. Mayne DQ, Raković SV (2003) Optimal control of constrained piecewise affine discrete-time systems. J Comput Optim Appl 25:167–191

    Article  MATH  Google Scholar 

  18. Muske KR, Badgwell TA (2002) Disturbance modeling for offset-free linear model predictive control. J Process Control 12:617–632

    Article  Google Scholar 

  19. Muske KR, Rawlings JB (1993) Model predictive control with linear models. AIChE J 39:262–287

    Article  Google Scholar 

  20. Odelson BJ, Rajamani MR, Rawlings JB (2006) A new autocovariance least-squares method for estimating noise covariances. Automatica 42:303–308

    Article  MathSciNet  MATH  Google Scholar 

  21. Pannocchia G, Laachi N, Rawlings JB (2006) A candidate to replace PID control: siso-constrained lq control. AIChE J 51:1178–1189

    Article  Google Scholar 

  22. Pannocchia G, Rawlings JB (2003) Disturbance models for offset-free model predictive control. AIChE J 49:426–437

    Article  Google Scholar 

  23. Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M (2000) On-line optimization via off-line parametric optimization tools. Comput Chem Eng 24:183–188

    Article  Google Scholar 

  24. Pistikopoulos EN, Georgiadis MC, Dua V (2007) Multi-parametric model-based control. Wiley-VCH, Weinheim

    Book  Google Scholar 

  25. Pregelj B, Gerkšič S (2008) Tracking implementations in multi-parametric predictive control. In: Proceedings of the 8th Portuguese conference on automatic control CONTROLO 2008. Universidade de Trás-os-Montes e Alto Douro, Vila Real, pp 944–949

    Google Scholar 

  26. Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11:733–764

    Article  Google Scholar 

  27. Rao CV, Rawlings JB (1999) Steady states and constraints in model predictive control. AIChE J 45:1266–1278

    Article  Google Scholar 

  28. Sakizlis V (2003) Design of model based controllers via parametric programming. PhD thesis, Imperial College, London

    Google Scholar 

  29. Sakizlis V, Dua V, Perkins JD, Pistikopoulos EN (2004) Robust model-based tracking control using parametric programming. Comput Chem Eng 28:195–207

    Article  Google Scholar 

  30. Spjøtvold J, Kerrigan EC, Jones CN, Tøndel P, Johansen TA (2006) On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42:2209–2214

    Article  Google Scholar 

  31. Spjøtvold J, Tøndel P, Johansen TA (2007) A continuous selection and unique polyhedral representation of solutions to convex multiparametric quadratic programs. J Optim Theory Appl 134:177–189

    Article  MathSciNet  Google Scholar 

  32. Tøndel P, Johansen TA, Bemporad A (2003) An algorithm for multiparametric quadratic programming and explicit MPC solutions. Automatica 39:489–497

    Article  Google Scholar 

  33. Tøndel P, Johansen TA, Bemporad A (2003) Further results on multi-parametric quadratic programming. In: Proceedings of the 42th IEEE CDC, Hawaii, pp 3173–3178

    Google Scholar 

  34. Tøndel P, Johansen TA, Bemporad A (2003) Evaluation of piecewise affine control via binary search tree. Automatica 39:945–950

    Article  Google Scholar 

  35. Vrančić D, Peng Y, Strmčnik S (1999) A new PID controller tuning method based on multiple integrations. Control Eng Pract 7(5):623–633

    Article  Google Scholar 

  36. Zeilinger MN, Jones CN, Morari M (2011) Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization. IEEE Trans Autom Control 56(7):1524–1534

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the EC (CONNECT, COOP-CT-2006-031638) and the Slovenian Research Agency (P2-0001). The authors are grateful for the technical assistance of INEA d.o.o. and JP CČN Domžale-Kamnik d.o.o.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gerkšič, S., Pregelj, B. (2013). Tracking Explicit Model Predictive Controllers for Low-Level Control Applications. In: Strmčnik, S., Juričić, Đ. (eds) Case Studies in Control. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5176-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5176-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5175-3

  • Online ISBN: 978-1-4471-5176-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics