Tracking Explicit Model Predictive Controllers for Low-Level Control Applications

  • Samo Gerkšič
  • Boštjan Pregelj
Part of the Advances in Industrial Control book series (AIC)


In explicit model predictive control (eMPC), the bulk of the computational load of classic MPC is performed during the off-line design stage, which enables the controller to be implemented on standard industrial automation equipment and for processes with fast dynamics, however, the computational complexity restricts applicability to small-scale control problems. The approach is appealing for a niche of control applications, but practical applications have been scarce so far. We describe one possible offset-free tracking setup that allows implementation of eMPC with relatively fast sampling and reasonably long horizons for practical applications. The applicability of eMPC is illustrated by an experimental case study of cooling-water temperature control in a biogas-fuelled combined-heat-and-power production unit, where eMPC replaces a pre-existing single-loop PID controller, with the aim of reducing unnecessary excursions of the cooling water temperature away from its set-point in the critical range near output constraints. eMPC controllers were designed using local linear analysis and tested both on a simplified simulation model and experimentally on the CHP unit. The performance improvements due to tuning of eMPC feedback action and due to the constraints-handling ability were examined, and several implementation issues related to the practical implementation of eMPC are discussed.


Model Predictive Control Prediction Horizon Target Calculator Output Constraint Disturbance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the EC (CONNECT, COOP-CT-2006-031638) and the Slovenian Research Agency (P2-0001). The authors are grateful for the technical assistance of INEA d.o.o. and JP CČN Domžale-Kamnik d.o.o.


  1. 1.
    Baotić M (2002) An efficient algorithm for multi-parametric quadratic programming. Technical report AUT02-05, ETH Zürich, Institut für Automatik Google Scholar
  2. 2.
    Bemporad A (2006) Hybrid toolbox for real-time applications, user’s guide. Technical report, University of Siena Google Scholar
  3. 3.
    Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gerkšič S (2011) Improving reliability of partition computation in explicit MPC with MPT toolbox. In: Proceedings of the 18th IFAC world congress 2011, Milano, Italy, pp 9260–9265 Google Scholar
  5. 5.
    Gerkšič S, Pregelj B (2009) Disturbance rejection tuning of a tracking multi-parametric predictive controller. In: Proceedings of the IEEE international conference on industrial technology, Gippsland, pp 65–70 Google Scholar
  6. 6.
    Gerkšič S, Strmčnik S, van den Boom TJJ (2008) Feedback action in predictive control: an experimental case study. Control Eng Pract 16:321–332 CrossRefGoogle Scholar
  7. 7.
    González AH, Adam EJ, Marchetti JL (2008) Conditions for offset elimination in receding horizon controllers: a tutorial analysis. Chem Eng Process 47:2184–2194 CrossRefGoogle Scholar
  8. 8.
    Grancharova A, Johansen TA, Kocijan J (2004) Explicit model predictive control of gas-liquid separation plant via orthogonal search tree partitioning. Comput Chem Eng 28:2481–2491 CrossRefGoogle Scholar
  9. 9.
    Grieder P, Borrelli F, Torrisi F, Morari M (2004) Computation of the constrained infinite time linear quadratic regulator. Automatica 40:701–708 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jones CN, Morari M (2006) Multiparametric linear complementarity problems. In: Proceedings of the 45th IEEE conference on decision and control, San Diego, CA, pp 5687–5692 CrossRefGoogle Scholar
  11. 11.
    Kvasnica M, Grieder P, Baotić M (2005) Multi-parametric toolbox.
  12. 12.
    Kvasnica M, Rauova I, Fikar M (2010) Automatic code generation for real-time implementation of model predictive control. In: Proceedings of IEEE international symposium on computer-aided control system design, Yokohama, pp 993–998 Google Scholar
  13. 13.
    Limon D, Alvarado I, Alamo T, Camacho EF (2008) MPC for tracking piecewise constant references for constrained linear systems. Automatica 44:2382–2387 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD conference, Taipei Google Scholar
  15. 15.
    Maciejowski JM (1989) Multivariable feedback design. Addison-Wesley, Wokingham zbMATHGoogle Scholar
  16. 16.
    Maciejowski JM (2002) Predictive control with constraints. Prentice Hall, Harlow Google Scholar
  17. 17.
    Mayne DQ, Raković SV (2003) Optimal control of constrained piecewise affine discrete-time systems. J Comput Optim Appl 25:167–191 zbMATHCrossRefGoogle Scholar
  18. 18.
    Muske KR, Badgwell TA (2002) Disturbance modeling for offset-free linear model predictive control. J Process Control 12:617–632 CrossRefGoogle Scholar
  19. 19.
    Muske KR, Rawlings JB (1993) Model predictive control with linear models. AIChE J 39:262–287 CrossRefGoogle Scholar
  20. 20.
    Odelson BJ, Rajamani MR, Rawlings JB (2006) A new autocovariance least-squares method for estimating noise covariances. Automatica 42:303–308 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Pannocchia G, Laachi N, Rawlings JB (2006) A candidate to replace PID control: siso-constrained lq control. AIChE J 51:1178–1189 CrossRefGoogle Scholar
  22. 22.
    Pannocchia G, Rawlings JB (2003) Disturbance models for offset-free model predictive control. AIChE J 49:426–437 CrossRefGoogle Scholar
  23. 23.
    Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M (2000) On-line optimization via off-line parametric optimization tools. Comput Chem Eng 24:183–188 CrossRefGoogle Scholar
  24. 24.
    Pistikopoulos EN, Georgiadis MC, Dua V (2007) Multi-parametric model-based control. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  25. 25.
    Pregelj B, Gerkšič S (2008) Tracking implementations in multi-parametric predictive control. In: Proceedings of the 8th Portuguese conference on automatic control CONTROLO 2008. Universidade de Trás-os-Montes e Alto Douro, Vila Real, pp 944–949 Google Scholar
  26. 26.
    Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11:733–764 CrossRefGoogle Scholar
  27. 27.
    Rao CV, Rawlings JB (1999) Steady states and constraints in model predictive control. AIChE J 45:1266–1278 CrossRefGoogle Scholar
  28. 28.
    Sakizlis V (2003) Design of model based controllers via parametric programming. PhD thesis, Imperial College, London Google Scholar
  29. 29.
    Sakizlis V, Dua V, Perkins JD, Pistikopoulos EN (2004) Robust model-based tracking control using parametric programming. Comput Chem Eng 28:195–207 CrossRefGoogle Scholar
  30. 30.
    Spjøtvold J, Kerrigan EC, Jones CN, Tøndel P, Johansen TA (2006) On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42:2209–2214 CrossRefGoogle Scholar
  31. 31.
    Spjøtvold J, Tøndel P, Johansen TA (2007) A continuous selection and unique polyhedral representation of solutions to convex multiparametric quadratic programs. J Optim Theory Appl 134:177–189 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tøndel P, Johansen TA, Bemporad A (2003) An algorithm for multiparametric quadratic programming and explicit MPC solutions. Automatica 39:489–497 CrossRefGoogle Scholar
  33. 33.
    Tøndel P, Johansen TA, Bemporad A (2003) Further results on multi-parametric quadratic programming. In: Proceedings of the 42th IEEE CDC, Hawaii, pp 3173–3178 Google Scholar
  34. 34.
    Tøndel P, Johansen TA, Bemporad A (2003) Evaluation of piecewise affine control via binary search tree. Automatica 39:945–950 CrossRefGoogle Scholar
  35. 35.
    Vrančić D, Peng Y, Strmčnik S (1999) A new PID controller tuning method based on multiple integrations. Control Eng Pract 7(5):623–633 CrossRefGoogle Scholar
  36. 36.
    Zeilinger MN, Jones CN, Morari M (2011) Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization. IEEE Trans Autom Control 56(7):1524–1534 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Samo Gerkšič
    • 1
  • Boštjan Pregelj
    • 1
  1. 1.Department of Systems and ControlJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations