Skip to main content

RFID: Opportunities and Challenges

  • Chapter

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

Radio Frequency Identification (RFID) creates a seamless link between individual objects and their digital natives. It allows objects to be uniquely, automatically and individually identified using wireless communications. With more than a half century’s development, RFID is becoming the mainstream driving force and has been able to provide various benefits in many different industries. In this chapter, we introduce the basic concepts in RFID technologies and its applications. We discuss the characteristics of RFID data and overview the state-of-the-art research on RFID data management. We also highlight some technical challenges in the management and use of RFID data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.

  2. 2.

    IETF RFC 2915.

  3. 3.

    http://www.gs1.org/gsmp/kc/epcglobal/discovery.

  4. 4.

    http://bridge-project.eu.

  5. 5.

    http://bridge-project.eu/index.php/bridge-public-deliverables/en/.

  6. 6.

    Researchers from IBM Almaden Research Center have also developed prototype DS [34]. However, the BRIDGE project has particularly demonstrated the use of DS along with the EPCglobal architecture in various industrial projects.

  7. 7.

    In a small environment, a tag may be read by more than one reader at the same time; as a result, its location is uncertain because of inconsistency derived from the readers.

  8. 8.

    The authors did not give a name to the model. For convenience, we call it “KAIST Trace Model”.

References

  1. Agrawal, J., Diao, Y., Gyllstrom, D., & Immerman, N. (2008). Efficient pattern matching over event streams. In Proceedings of the 2008 ACM SIGMOD international conference on management of data (SIGMOD’08), Vancouver, Canada.

    Google Scholar 

  2. Agrawal, P., Benjelloun, O., Das Sarma, A., Hayworth, C., Nabar, S., Sugihara, T., & Widom, J. (2006). Trio: a system for data, uncertainty, and lineage. In Proceedings of the 32nd international conference on very large data bases (VLDB’06), Seoul, Korea.

    Google Scholar 

  3. Agrawal, R., Cheung, A., Kailing, K., & Schonauer, S. (2006). Towards traceability across sovereign, distributed RFID databases. In Proceedings of the 10th international database engineering and applications symposium (IDEAS’06), Delhi, India.

    Google Scholar 

  4. Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2002). Hippocratic databases. In Proceedings of the 28th international conference on very large data bases (VLDB’02).

    Google Scholar 

  5. Aigner, M., & Feldhofer, M. (2005). Secure symmetric authentication for RFID tags. In Proceedings of the telecommunication and mobile computing (TCMC’05), Graz, Austria.

    Google Scholar 

  6. Cheng, R., Singh, S., & Prabhakar, S. (2005). U-DBMS: a database system for managing constantly-evolving data. In Proceedings of the 31st international conference on very large data bases (VLDB’05).

    Google Scholar 

  7. Cheung, A., Kailing, K., & Schönauer, S. (2007). Theseos: a query engine for traceability across sovereign, distributed RFID databases. In Proceedings of the 23rd international conference on data engineering (ICDE’07), Istanbul, Turkey.

    Google Scholar 

  8. Cocci, R. (2007). SPIRE: Scalable processing of RFID event streams. In Proceedings of the 5th RFID academic convocation, Brussels, Belgium.

    Google Scholar 

  9. Cocci, R., Tran, T., Diao, Y., & Shenoy, P. (2008). Efficient data interpretation and compression over RFID streams. In Proceedings of the 24th international conference on data engineering (ICDE’08), Cancun, Mexico.

    Google Scholar 

  10. Dimitriou, T. (2005). A lightweight RFID protocol to protect against traceability and cloning attacks. In Proceedings of the 1st international conference on security and privacy for emerging areas in communications networks (SECURECOMM’05), Athens, Greece.

    Google Scholar 

  11. EPCGLOBAL. http://www.EPCGLOBAL.com.

  12. Johnson, R., Gamma, E., Helm, R., & Vlissides, J. (1995). Design patterns—elements of reusable object-oriented software. Reading: Addison-Wesley.

    Google Scholar 

  13. Feldhofer, M., Dominikus, S., & Wolkerstorfer, J. (2004). Strong authentication for RFID systems using the AES algorithm. In Proceedings of the 6th international workshop on cryptographic hardware and embedded systems (CHES’04), Cambridge, USA.

    Google Scholar 

  14. Finkenzeller, K. (2003). RFID handbook: fundamentals and applications in contactless smart cards and identification. New York: Wiley.

    Google Scholar 

  15. Gonzalez, H., Han, J., Cheng, H., Li, X., Klabjan, D., & Wu, T. (2010). Modeling massive RFID data sets: a gateway-based movement graph approach. IEEE Transactions on Knowledge and Data Engineering, 22, 90–104.

    Article  Google Scholar 

  16. Gonzalez, H., Han, J., Li, X., & Klabjan, D. (2006). Warehousing and analyzing massive RFID data sets. In Proceedings of the 22nd international conference on data engineering (ICDE’06), Atlanta, USA.

    Google Scholar 

  17. Gonzalez, H., Han, J., & Shen, X. (2007). Cost-conscious cleaning of massive RFID data sets. In Proceedings of the 23rd international conference on data engineering (ICDE’07), Istanbul, Turkey, April 2007.

    Google Scholar 

  18. Gu, T., Wu, Z., Tao, X., Pung, H. K., & Lu, J. (2009). EpSICAR: an emerging patterns based approach to sequential, interleaved and concurrent activity recognition. In IEEE international conference on pervasive computing and communications, Los Alamitos, CA, USA.

    Google Scholar 

  19. Huynh, T., Fritz, M., & Schiele, B. (2008). Discovery of activity patterns using topic models. In Proceedings of the 10th international conference on ubiquitous computing (Ubicomp ’08), Seoul, South Korea.

    Google Scholar 

  20. Jeffery, S., Alonso, G., Franklin, M., Hong, W., & Widom, J. (2006). Declarative support for sensor data cleaning. IEEE Pervasive Computing, 3968, 83–100.

    Article  Google Scholar 

  21. Jeffery, S., Franklin, M., & Garofalakis, M. (2008). An adaptive RFID middleware for supporting metaphysical data independence. The VLDB Journal, 17, 265–289.

    Article  Google Scholar 

  22. Jeffery, S., Garofalakis, M., & Franklin, M. (2006). Adaptive cleaning for RFID data streams. In Proceedings of the 32nd international conference on very large data bases (VLDB’06), Seoul, Korea, September 2006.

    Google Scholar 

  23. Juels, A. (2006). RFID security and privacy: a research survey. IEEE Journal on Selected Areas in Communications, 24(2), 381–394.

    Article  MathSciNet  Google Scholar 

  24. Juels, A., & Pappu, R. (2002). Squealing euros: privacy protection in RFID-enabled banknotes. In Financial cryptography (pp. 103–121). Berlin: Springer.

    Google Scholar 

  25. Khoussainova, N., Balazinska, M., & Suciu, D. (2008). Probabilistic event extraction from RFID data. Cancun, Mexico, April 2008.

    Google Scholar 

  26. Ku, W.-S., Chen, H., Wang, H., & Sun, M.-T. (2012). A Bayesian inference-based framework for RFID data cleansing. IEEE Transactions on Knowledge and Data Engineering. doi:10.1109/TKDE.2012.116.

    Google Scholar 

  27. Lee, C.-H., & Chung, C.-W. (2008). Efficient storage scheme and query processing for supply chain management using RFID. In Proceedings of the 28th ACM SIGMOD international conference on management of data (SIGMOD’08), Vancouver, Canada.

    Google Scholar 

  28. Liao, G., Li, J., Chen, L., & Wan, C. (2011). KLEAP: an efficient cleaning method to remove cross-reads in RFID streams. In Proceedings of the 20th ACM international conference on information and knowledge management (CIKM’11), Glasgow, Scotland, UK.

    Google Scholar 

  29. Liu, M., Li, M., Golovnya, D., Rundensteiner, E. A., & Claypool, K. (2009). Sequence pattern query processing over out-of-order event streams. In Proceedings of the 2009 IEEE international conference on data engineering (ICDE’09), Shanghai, China.

    Google Scholar 

  30. Massawe, L. V., Vermaak, H., & Kinyua, J. D. M. (2012). An adaptive data cleaning scheme for reducing false negative reads in RFID data streams. In Proceedings of the 2012 IEEE international conference on RFID (RFID’12), Orlando, USA, April 2012.

    Google Scholar 

  31. Nie, Y., Li, Z., & Chen, Q. (2011). Complex event processing over unreliable RFID data streams. In Proceedings of the 13th Asia-Pacific web conference on web technologies and applications (APWeb’11), Beijing, China.

    Google Scholar 

  32. Ondrus, J., & Pigneur, Y. (2007). An assessment of NFC for future mobile payment systems. In Proceedings of the international conference on the management of mobile business, Toronto, Canada.

    Google Scholar 

  33. Osaka, K., Takagi, T., Yamazaki, K., & Takahashi, O. (2009). An efficient and secure RFID security method with ownership transfer. In RFID security (pp. 147–176). New York: Springer.

    Google Scholar 

  34. Rantzau, R., Kailing, K., Beier, S., & Grandison, T. (2006). Discovery services—enabling RFID traceability in EPCglobal networks. In 13th international conference on management of data (COMAD’06), Delhi, India.

    Google Scholar 

  35. Rao, J., Doraiswamy, S., Thakkar, H., & Colby, L. S. (2006). A deferred cleansing method for RFID data analytics. In Proceedings of the 32nd international conference on very large data bases (VLDB’06), Seoul, Korea, September 2006.

    Google Scholar 

  36. Ré, C., Letchner, J., Balazinksa, M., & Suciu, D. (2008). Event queries on correlated probabilistic streams. In Proceedings of the 2008 ACM international conference on management of data (SIGMOD’08), Vancouver, Canada.

    Google Scholar 

  37. Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., & Steyvers, M. (2010). Learning author-topic models from text corpora. ACM Transactions on Information Systems, 28, 4:1–4:38.

    Article  Google Scholar 

  38. Sarma, S., Brock, D., & Engels, D. (2001). Radio frequency identification and the electronic product code. IEEE MICRO, 21(6), 50–54. 11/12.

    Article  Google Scholar 

  39. Sheng, Q. Z., Li, X., & Zeadally, S. (2008). Enabling next-generation RFID applications: solutions and challenges. Computer, 41(9), 21–28.

    Article  Google Scholar 

  40. Sutton, C., & McCallum, A. (2007). An introduction to conditional random fields for relational learning. In L. Getoor & B. Taskar (Eds.), Introduction to statistical relational learning. Cambridge: MIT Press.

    Google Scholar 

  41. Tran, T., Sutton, C., Cocci, R., Yanming, N., Yanlei, D., & Shenoy, P. (2009). Probabilistic inference over RFID streams in mobile environments. In Proceedings of the 25th international conference on data engineering (ICDE’09), Shanghai, China, April 2009.

    Google Scholar 

  42. Wang, F., & Liu, P. (2005). Temporal management of RFID data. In Proceedings of the 31st international conference on very large data bases (VLDB’05), Trondheim, Norway.

    Google Scholar 

  43. Wang, L., Cheung, D., Cheng, R., Lee, S., & Yang, X. (2012). Efficient mining of frequent itemsets on large uncertain databases. IEEE Transactions on Knowledge and Data Engineering, 24(12), 2170–2183.

    Article  Google Scholar 

  44. Want, R. (2006). An introduction to RFID technology. IEEE Pervasive Computing, 5(1), 25–33.

    Article  Google Scholar 

  45. Wasserkrug, S., Gal, A., Etzion, O., & Turchin, Y. (2008). Complex event processing over uncertain data. In Proceedings of the second international conference on distributed event-based systems (DEBS’08), Rome, Italy.

    Google Scholar 

  46. Wasserkrug, S., Gal, A., Etzion, O., & Turchin, Y. (2012). Efficient processing of uncertain events in rule-based systems. IEEE Transactions on Knowledge and Data Engineering, 24(1), 45–58.

    Article  Google Scholar 

  47. Wei, B., Fedak, G., & Cappello, F. (2005). Scheduling independent tasks sharing large data distributed with BitTorrent. In Proceedings of the 6th IEEE/ACM international workshop on grid computing (GRID’05), Seattle, USA.

    Google Scholar 

  48. Welbourne, E., Khoussainova, N., Letchner, J., Li, Y., Balazinska, M., Borriello, G., & Suciu, D. (2008). Cascadia: a system for specifying, detecting, and managing RFID events. In Proceedings of the 6th international conference on mobile systems, applications, and services (MobiSys’08), Breckenridge, USA.

    Google Scholar 

  49. Wu, Y., Sheng, Q. Z., & Ranasinghe, D. (2011). Peer-to-peer objects tracking in the Internet of things. In Proceedings of the 40th international conference on parallel processing (ICPP’11), Taipei, Taiwan.

    Google Scholar 

  50. Wu, Y., Sheng, Q. Z., Ranasinghe, D., & Yao, L. (2012). PeerTrack: a platform for tracking and tracing objects in large-scale traceability networks. In Proceedings of the 15th international conference on extending database technology (EDBT’12), Berlin, Germany.

    Google Scholar 

  51. Zhao, Z., Yan, D., & Ng, W. (2012). Mining probabilistically frequent sequential patterns in uncertain databases. In Proceedings of the 15th international conference on extending database technology (EDBT’12), Berlin, Germany.

    Google Scholar 

  52. Ziekow, H., & Ivantysynova, L. (2008). A probabilistic approach for cleaning RFID data. In Proceedings of the 24th international conference on data engineering workshop (ICDEW’07), Istanbul, Turkey, April 2008.

    Google Scholar 

Download references

Acknowledgements

Quan Z. Sheng’s work has been partially supported by Australian Research Council (ARC) Discovery Grant DP0878917 and Linkage Project LP100200114. We thank the reviewers for their valuable comments, which helped us improve the content and quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Wu, Y., Sheng, Q.Z., Zeadally, S. (2013). RFID: Opportunities and Challenges. In: Chilamkurti, N., Zeadally, S., Chaouchi, H. (eds) Next-Generation Wireless Technologies. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-5164-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5164-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5163-0

  • Online ISBN: 978-1-4471-5164-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics