Barbounis TG, Theocharis JB (2007) Locally recurrent neural networks for wind speed prediction using spatial correlation. Inform Sci 177(24):5775–5797. doi:10.1016/j.ins.2007.05.024
CrossRef
Google Scholar
Beyer H, Degner T, Hausmann J, Hoffmann M, Rujan P (1994) Short term prediction of wind speed and power output of a wind turbine with neural networks. In: Proceedings of the 5th European wind energy association conference and exhibition. Thessaloniki, Greece, pp 349–352
Google Scholar
Bilgili M, Sahin B, Yasar A (2007) Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energ 32:2350–2360. doi:10.1016/j.renene.2006.12.001
CrossRef
Google Scholar
Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Cambridge
Google Scholar
Bouzgou H, Benoudjit N (2011) Multiple architecture system for wind speed prediction. Appl Energ 88:2463–2471. doi:10.1016/j.apenergy.2011.01.037
CrossRef
Google Scholar
Cadenas E, Rivera W (2007) Wind speed forecasting in the South coast of Oaxaca, Mexico. Renew Energ 32:2116–2128. doi:10.1016/j.renene.2006.10.005
CrossRef
Google Scholar
Cellura M, Cirrincione G, Marvuglia A, Miraoui A (2008) Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis. Renew Energ 33:1237–1250. doi:10.1016/j.renene.2007.08.012
CrossRef
Google Scholar
Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E (2008) A review on the young history of the wind power short-term prediction. Renew Sust Energ Rev 12(6):1725–1744. doi:10.1016/j.rser.2007.01.015
CrossRef
Google Scholar
Cybenco G (1989) Approximation by superposition of a sigmoidal function. Math Control Signal 2:303–314. doi:10.1007/BF02551274
CrossRef
Google Scholar
Deligiorgi D, Philippopoulos K (2011) Spatial interpolation methodologies in urban air pollution modeling: application for the greater area of metropolitan Athens, Greece. In Nejadkoorki F (ed) Advanced air pollution, InTech Publishers, doi: 10.5772/17734
Deligiorgi D, Kolokotsa D, Papakostas T, Mantou E (2007) Analysis of the wind field at the broader area of Chania, Crete. In: Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment and Sustainable Development, pp 270–275
Google Scholar
Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energ 87(3):934–942. doi:10.1016/j.apenergy.2009.09.005
CrossRef
Google Scholar
Fausett LV (1994) Fundamentals neural networks: architecture, algorithms, and applications. Prentice-Hall, Inc., Englewood Cliffs
Google Scholar
Fox DG (1981) Judging air quality model performance. B Am Meteorol Soc 62:599–609. doi: 10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2
Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636. doi:10.1016/S1352-2310(97)00447-0
CrossRef
Google Scholar
Heaton J (2005) Introduction to neural networks with Java. Heaton Research Inc., Chesterfield
Google Scholar
Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. doi:10.1016/0893-6080(89)90020-8
CrossRef
Google Scholar
Jain A, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44
CrossRef
Google Scholar
Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sust Energ Rev 5:273–401. doi: 10.1016/S1364-0321(01)00006-5
Google Scholar
Kamal L, Jafri ZY (1997) Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Sol Energ 61(1):23–32. doi: 10.1016/S0038-092X(97)00037-6
Kariniotakis G, Stavrakakis GS, Nogaret EF (1996) Wind power forecasting using advanced neural network models. IEEE T Energ Conver 11(4):762–7. doi: 10.1109/60.556376
Koletsis I, Lagouvardos K, Kotroni V, Bartzokas A (2009) The interaction of northern wind flow with the complex topography of Crete island-part 1: observational study. Nat Hazards Earth Syst Sci 9:1845–1855. doi: 10.5194/nhess-9-1845-2009
Koletsis I, Lagouvardos K, Kotroni V, Bartzokas A (2010) The interaction of northern wind flow with the complex topography of Crete island-part 2: numerical study. Nat Hazards Earth Syst Sci 10:1115–1127. doi: 10.5194/nhess-10-1115-2010
Kotroni V, Lagouvardos K, Lalas D (2001) The effect of the island of Crete on the etesian winds over the Aegean sea. Q J R Meteorol Soc 127:1917–1937. doi: 10.1002/qj.49712757604
Google Scholar
Lei M, Shiyan L, Chuanwen J, Hongling L, Yan Z (2009) A review on the forecasting of wind speed and generated power. Renew Sust Energ Rev 13:915–920. doi: 10.1016/j.rser.2008.02.002
Google Scholar
Li G, Shi J (2010) On comparing three artificial neural networks for wind speed forecasting. Appl Energ 87:2313–20. doi: 10.1016/j.apenergy.2009.12.013
Google Scholar
Luo W, Taylor CM, Parker RS (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int J Climatol 28:947-959. doi: 10.1002/joc.1583
Google Scholar
Mohandes M, Rehman S, Halawani TO (1998) A neural networks approach for wind speed prediction. Renew Energ 13(3):345–354. doi: 10.1016/S0960-1481(98)00001-9
Google Scholar
More A, Deo MC (2003) Forecasting wind with neural networks. Mar Struct 16(1):35–49. doi: 10.1016/S0951-8339(02)00053-9
Google Scholar
Oztopal A (2006) Artificial neural network approach to spatial estimation of wind velocity. Energ Convers Manage 47:395–406. doi: 10.1016/j.enconman.2005.05.009
Philippopoulos K, Deligiorgi D (2012) Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energ 38(1):75–82
CrossRef
Google Scholar
Poggi P, Muselli M, Notton G, Cristofari C, Louche A (2003) Forecasting and simulating wind speed in Corsica by using an autoregressive model. Energ Convers Manage 44:3177–3196
CrossRef
Google Scholar
Powell MJD (1987) Radial basis functions for multivariable interpolation: a review. In: Mason JC, Cox MG (eds) Algorithms for approximation. Clarendon Press, Oxford
Google Scholar
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536
CrossRef
Google Scholar
Soman SS, Zareipour H, Malik O, Mandal P (2010) A review of wind power and wind speed forecasting methods with different time horizons. North American Power Symposium (NAPS), doi: 10.1109/NAPS.2010.5619586
Torres LJ, Garcia A, De Blas M, De Francisco A (2005) Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol Energ 79:65–77. doi:10.1016/j.solener.2004.09.013
CrossRef
Google Scholar
Velazquez S, Carta AJ, Matias JM (2011) Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: a case study in the Canary Islands. Appl Energ 88:3869–3881. doi:10.1016/j.apenergy.2011.05.007
CrossRef
Google Scholar
Willmott CJ (1982) Some comments on the evaluation of model performance. B Am Meteorol Soc 63:1309–1313. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. doi: 10.3354/cr030079
Google Scholar
Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005. doi: 10.1029/JC090iC05p08995
Google Scholar
Yu H, Wilamowski BM (2011) Levenberg–Marquardt training. In: Wilamowski BM, Irwin JD (eds) Industrial electronics handbook, 2nd edn. CRC Press, Boca Raton
Google Scholar
Zhang GP, Patuwo E, Hu M (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecasting 14(1):35–62. doi: 10.1016/S0169-2070(97)00044-7
Google Scholar