Skip to main content

Distributed Control of Microscopic Robots in Biomedical Applications

  • Chapter

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

To illustrate controls for large collections of microscopic robots, this chapter considers a prototypical diagnostic task of finding a small chemical source in a multicellular organism via the circulatory system. To do so, we first review plausible capabilities for microscopic robots and the physical constraints due to operation in fluids at low Reynolds number, diffusion-limited sensing and thermal noise from Brownian motion. We then discuss techniques for evaluating the behavior of large collections of robots, and examine a specific task scenario. The emphasis here is on feasible performance with plausible biophysical parameters and robot capabilities. Evaluation metrics include minimizing hardware capabilities to simplify fabrication and ensuring

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alon, U. (2007). An introduction to systems biology: design principles of biological circuits. London: Chapman and Hall.

    Google Scholar 

  • Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2, 2006.0028. doi:10.1038/msb4100073.

    Article  Google Scholar 

  • Arbuckle, D., & Requicha, A. A. G. (2004). Active self-assembly. In Proceedings of the IEEE international conference on robotics and automation, New York (pp. 896–901).

    Google Scholar 

  • Behkam, B., & Sitti, M. (2007). Bacterial flagella-based propulsion and on/off motion control of microscale objects. Applied Physics Letters, 90, 023902.

    Article  Google Scholar 

  • Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., & Shapiro, E. (2004). An autonomous molecular computer for logical control of gene expression. Nature, 429, 423–429.

    Article  Google Scholar 

  • Berg, H. C. (1993). Random walks in biology (2nd ed.). Princeton: Princeton Univ. Press.

    Google Scholar 

  • Berg, H. C., & Purcell, E. M. (1977). Physics of chemoreception. Biophysical Journal, 20, 193–219.

    Article  Google Scholar 

  • Berna, J., et al. (2005). Macroscopic transport by synthetic molecular machines. Nature Materials, 4, 704–710.

    Article  Google Scholar 

  • Bojinov, H., Casal, A., & Hogg, T. (2002). Multiagent control of modular self-reconfigurable robots. Artificial Intelligence, 142, 99–120. arXiv:cs.RO/0006030.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Casal, A., Hogg, T., & Cavalcanti, A. (2003). Nanorobots as cellular assistants in inflammatory responses. In J. Shapiro (Ed.), Proceedings of the 2003 Stanford biomedical computation symposium (BCATS2003), Stanford, CA (p. 62). Available at http://bcats.stanford.edu.

    Google Scholar 

  • Cavalcanti, A., & Freitas, R. A. Jr. (2002). Autonomous multi-robot sensor-based cooperation for nanomedicine. International Journal of Nonlinear Sciences and Numerical Simulation, 3, 743–746.

    Article  Google Scholar 

  • Collier, C. P., et al. (1999). Electronically configurable molecular-based logic gates. Science, 285, 391–394.

    Article  Google Scholar 

  • Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17, 043001.

    Article  Google Scholar 

  • Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290, 1532–1535.

    Article  Google Scholar 

  • Dhariwal, A., Sukhatme, G. S., & Requicha, A. A. G. (2004). Bacterium-inspired robots for environmental monitoring. In Proceedings of the IEEE international conference on robotics and automation, New York (pp. 1436–1443).

    Google Scholar 

  • Douglas, S. M., Bachelet, I., & Church, G. M. (2012). A logic-gated nanorobot for targeted transport of molecular payloads. Science, 335, 831–834.

    Article  Google Scholar 

  • Drexler, K. E. (1992). Nanosystems: molecular machinery, manufacturing, and computation. New York: Wiley.

    Google Scholar 

  • Dreyfus, R., et al. (2005). Microscopic artificial swimmers. Nature, 437, 862–865.

    Article  Google Scholar 

  • Ferber, D. (2004). Microbes made to order. Science, 303, 158–161.

    Article  Google Scholar 

  • Fernandes, R., & Gracias, D. H. (2009). Toward a miniaturized mechanical surgeon. Materials Today, 12(10), 14–20.

    Article  Google Scholar 

  • Freitas, R. A. Jr. (1999). Nanomedicine, volume I: basic capabilities. Georgetown: Landes Bioscience. Available at www.nanomedicine.com/NMI.htm.

    Google Scholar 

  • Freitas, R. A. Jr. (2003). Nanomedicine, volume IIA: biocompatibility. Georgetown: Landes Bioscience. Available at www.nanomedicine.com/NMIIA.htm.

    Google Scholar 

  • Freitas, R. A. Jr. (2006). Pharmacytes: an ideal vehicle for targeted drug delivery. Journal of Nanoscience and Nanotechnology, 6, 2769–2775.

    Article  Google Scholar 

  • Fritz, J., et al. (2000). Translating biomolecular recognition into nanomechanics. Science, 288, 316–318.

    Article  Google Scholar 

  • Fung, Y. C. (1997). Biomechanics: circulation (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Galstyan, A., Hogg, T., & Lerman, K. (2005). Modeling and mathematical analysis of swarms of microscopic robots. In P. Arabshahi & A. Martinoli (Eds.), Proceedings of the IEEE swarm intelligence symposium (SIS2005), New York (pp. 201–208).

    Google Scholar 

  • Gazi, V., & Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 34, 539–557.

    Article  Google Scholar 

  • Ghosh, S., et al. (2003). Carbon nanotube flow sensors. Science, 299, 1042–1044.

    Article  Google Scholar 

  • Gourley, P. L., et al. (2005). Ultrafast nanolaser flow device for detecting cancer in single cells. Biomedical Microdevices, 7, 331–339.

    Article  Google Scholar 

  • Griffith, S., Goldwater, D., & Jacobson, J. M. (2005). Robotics: self-replication from random parts. Nature, 437, 636.

    Article  Google Scholar 

  • Hamad-Schifferli, K., et al. (2002). Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 415, 152–155.

    Article  Google Scholar 

  • Hernandez-Ortiz, J. P., Stoltz, C. G., & Graham, M. D. (2005). Transport and collective dynamics in suspensions of confined swimming particles. Physical Review Letters, 95, 204501.

    Article  Google Scholar 

  • Hogg, T. (2007). Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-Agent Systems, 14(3), 271–305.

    Article  MathSciNet  Google Scholar 

  • Hogg, T. (2008). Distributed control of microscopic robots in biomedical applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (1st ed.). London: Springer.

    Google Scholar 

  • Hogg, T., & Freitas, R. A. Jr. (2010). Chemical power for microscopic robots in capillaries. Nanomedicine, 6, 298–317. arXiv:0906.5022.

    Article  Google Scholar 

  • Hogg, T., & Freitas, R. A. Jr (2012). Acoustic communication for medical nanorobots. Nano Communication Networks, 3, 83–102.

    Article  Google Scholar 

  • Hogg, T., & Huberman, B. A. (2004). Dynamics of large autonomous computational systems. In K. Tumer & D. Wolpert (Eds.), Collectives and the design of complex systems (pp. 295–315). New York: Springer.

    Chapter  Google Scholar 

  • Hogg, T., & Kuekes, P. J. (2006). Mobile microscopic sensors for high-resolution in vivo diagnostics. Nanomedicine, 2, 239–247.

    Article  Google Scholar 

  • Hogg, T., & Sretavan, D. W. (2005). Controlling tiny multi-scale robots for nerve repair. In Proceedings of the 20th national conference on artificial intelligence (AAAI2005) (pp. 1286–1291). Menlo Park: AAAI Press.

    Google Scholar 

  • Howard, J. (1997). Molecular motors: structural adaptations to cellular functions. Nature, 389, 561–567.

    Article  Google Scholar 

  • Janeway, C. A., et al. (2001). Immunobiology: the immune system in health and disease (5th ed.). New York: Garland.

    Google Scholar 

  • Karniadakis, G. E. M., & Beskok, A. (2002). Micro flows: fundamentals and simulation. Berlin: Springer.

    MATH  Google Scholar 

  • Keller, K. H. (1971). Effect of fluid shear on mass transport in flowing blood. In Proceedings of Federation of American Societies for Experimental Biology (pp. 1591–1599).

    Google Scholar 

  • Keszler, B. L., Majoros, I. J., & Baker, J. R. Jr. (2001). Molecular engineering in nanotechnology: structure and composition of multifunctional devices for medical application. In Proceedings of the ninth foresight conference on molecular nanotechnology, Palo Alto, CA.

    Google Scholar 

  • Lahann, J., & Langer, R. (2005). Smart materials with dynamically controllable surfaces. MRS Bulletin, 30, 185–188.

    Article  Google Scholar 

  • Lerman, K., et al. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7, 375–393.

    Article  Google Scholar 

  • Li, Z., et al. (2005). Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics. A, Materials Science & Processing, 80, 1257–1263.

    Article  Google Scholar 

  • Liu, J., et al. (2006). Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 51, 2179–2189.

    Article  Google Scholar 

  • Mahfuz, M. U., & Ahmed, K. M. (2005). A review of micro-nano-scale wireless sensor networks for environmental protection: prospects and challenges. Science and Technology of Advanced Materials, 6, 302–306.

    Article  Google Scholar 

  • Mano, N., Mao, F., & Heller, A. (2002). A miniature biofuel cell operating in a physiological buffer. Journal of the American Chemical Society, 124, 12962–12963.

    Article  Google Scholar 

  • Martel, S., Mathieu, J.-B., Felfoul, O., Chanu, A., Aboussouan, E., Tamaz, S., & Pouponneau, P. (2007). Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Applied Physics Letters, 90, 114105.

    Article  Google Scholar 

  • Martel, S., et al. (2008). Flagellated bacterial nanorobots for medical interventions in the human body. In D. Meldrum & O. Khatib (Eds.), Proceedings of 2nd IEEE conference on biomedical robotics and biomechatronics (pp. 264–269).

    Chapter  Google Scholar 

  • Mataric, M. (1992). Minimizing complexity in controlling a mobile robot population. In Proceedings of the 1992 IEEE intl. conf. on robotics and automation, New York (pp. 830–835).

    Chapter  Google Scholar 

  • McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 94, 814–819.

    Article  Google Scholar 

  • McCurdy, C. W., et al. (2002). Theory and modeling in nanoscience (Workshop report). US Dept. of Energy. www.science.doe.gov/bes/reports/files/tmn_rpt.pdf.

  • Montemagno, C., & Bachand, G. (1999). Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 10, 225–231.

    Article  Google Scholar 

  • Morris, K. (2001). Macrodoctor, come meet the nanodoctors. The Lancet, 357, 778.

    Article  Google Scholar 

  • Natterer, F. (2001). The mathematics of computerized tomography. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  Google Scholar 

  • Nelson, P. (2008). Biological physics: energy, information, life. New York: W.H. Freeman.

    Google Scholar 

  • NIH (2003). National Institutes of Health roadmap: nanomedicine. Available at http://nihroadmap.nih.gov/nanomedicine/index.asp.

  • Olamaei, N., Cheriet, F., Beaudoin, G., & Martel, S. (2010). MRI visualization of a single 15 μm navigable imaging agent and future microrobot. In Proceedings of the 2010 conf. on engineering in medicine and biology society (pp. 4355–4358). New York: IEEE.

    Google Scholar 

  • Patolsky, F., & Lieber, C. M. (2005). Nanowire nanosensors. Materials Today, 8, 20–28.

    Article  Google Scholar 

  • Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45, 3–11.

    Article  Google Scholar 

  • Rapoport, B. I., Kedzierski, J. T., & Sarpeshkar, R. (2012). A glucose fuel cell for implantable brain-machine interfaces. PLoS ONE, 7(6), e38436.

    Article  Google Scholar 

  • Requicha, A. A. G. (2003). Nanorobots, NEMS and nanoassembly. Proceedings of the IEEE, 91, 1922–1933.

    Article  Google Scholar 

  • Riedel, I. H., et al. (2005). A self-organized vortex array of hydrodynamically entrained sperm cells. Science, 309, 300–303.

    Article  Google Scholar 

  • Rus, D., & Vona, M. (1999). Self-reconfiguration planning with compressible unit modules. In Proceedings of the conference on robotics and automation (ICRA99) (pp. 2513–2520). New York: IEEE.

    Google Scholar 

  • Salemi, B., Shen, W.-M., & Will, P. (2001). Hormone controlled metamorphic robots. In Proceedings of the international. conference on robotics and automation (ICRA2001), New York (pp. 4194–4199).

    Google Scholar 

  • Sanchez, S., & Pumera, M. (2009). Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. Asian Journal of Chemistry, 4, 1402–1410.

    Article  Google Scholar 

  • Schrand, A. M., et al. (2007). Are diamond nanoparticles cytotoxic? Journal of Physical Chemistry. B, 111, 2–7.

    Article  Google Scholar 

  • Service, R. F. (2005). Nanotechnology takes aim at cancer. Science, 310, 1132–1134.

    Article  Google Scholar 

  • Sheehan, P. E., & Whitman, L. J. (2005). Detection limits for nanoscale biosensors. Nano Letters, 5(4), 803–807.

    Article  Google Scholar 

  • Smith, L. M. (2010). Molecular robots on the move. Nature, 465, 167–168.

    Article  Google Scholar 

  • Soong, R. K., et al. (2000). Powering an inorganic nanodevice with a biomolecular motor. Science, 290, 1555–1558.

    Article  Google Scholar 

  • Squires, T. M., & Quake, S. R. (2005). Microfluidics: fluid physics at the nanoliter scale. Reviews of Modern Physics, 77, 977–1026.

    Article  Google Scholar 

  • Sretavan, D., Chang, W., Keller, C., & Kliot, M. (2005). Microscale surgery on axons for nerve injury treatment. Neurosurgery, 57(4), 635–646.

    Article  Google Scholar 

  • Vogel, S. (1994). Life in moving fluids (2nd ed.). Princeton: Princeton Univ. Press.

    Google Scholar 

  • Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242–246.

    Article  Google Scholar 

  • Wang, S.-Y. & Williams, R. S. (Eds.) (2005). Nanoelectronics (Vol. 80). New York: Springer. Special issue of Applied Physics A.

    Google Scholar 

  • Wang, H., et al. (2005). In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United States of America, 102, 15752–15756.

    Article  Google Scholar 

  • Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295, 2418–2421.

    Article  Google Scholar 

  • Win, M. N., & Smolke, C. D. (2008). Higher-order cellular information processing with synthetic RNA devices. Science, 322, 456–460.

    Article  Google Scholar 

  • Xie, X. S., Yu, J., & Yang, W. Y. (2006). Living cells as test tubes. Science, 312, 228–230.

    Article  Google Scholar 

Download references

Acknowledgements

I have benefited from discussions with Philip J. Kuekes and David Sretavan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tad Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hogg, T. (2013). Distributed Control of Microscopic Robots in Biomedical Applications. In: Prokopenko, M. (eds) Advances in Applied Self-Organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-4471-5113-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5113-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5112-8

  • Online ISBN: 978-1-4471-5113-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics