Skip to main content

Formal Immune Networks: Self-Organization and Real-World Applications

  • Chapter
Advances in Applied Self-Organizing Systems

Abstract

This chapter proposes a generalized model of formal immune network (FIN) based on self-organizing features of apoptosis (programmed cell death) and autoimmunization both induced by cytokines (messenger proteins). The chapter also describes real-world applications of such FIN to intrusion detection in computer networks and forecast of hydro-physical fields in the ocean. The obtained results demonstrate that FIN outperforms (by training time and accuracy) other approaches of computational intelligence as well as more conventional methods of interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamatzky, A. (1994). Identification of cellular automata. London: Taylor & Francis.

    MATH  Google Scholar 

  • Adamatzky, A. (2001). Computing in nonlinear media and automata collectives. Bristol: IOP

    Book  MATH  Google Scholar 

  • Ader, R., Felten, D. L., & Cohen, N. (Eds.) (2001). Psychoneuroimmunology. New York: Academic Press.

    Google Scholar 

  • Agnati, L. F., Tarakanov, A. O., Ferre, S., Fuxe, K., & Guidolin, D. (2005a). Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implication for drug development. Journal of Molecular Neuroscience, 26(2–3), 193–208.

    Article  Google Scholar 

  • Agnati, L. F., Tarakanov, A. O., & Guidolin, D. (2005b). A simple mathematical model of cooperativity in receptor mosaics based on the “symmetry rule”. Biosystems, 80(2), 165–173.

    Article  Google Scholar 

  • Balkwill, F. (Ed.) (2000). The cytokine network. New York: Oxford University Press.

    Google Scholar 

  • Bay, S. D. (1999). The UCI KDD archive. Irvine: University of California, Dept. of Information and Computer Science. Available at http://kdd.ics.uci.edu.

    Google Scholar 

  • Bunk, S. (2003). Signal blues: stress and cytokine levels underpin a provocative theory of depression. The Scientist, 25, 24–28.

    Google Scholar 

  • Cloete, I. & Zurada, J. M. (Eds.) (2000). Knowledge-based neurocomputing. Cambridge: MIT Press.

    Google Scholar 

  • Dasgupta, D. (Ed.) (1999). Artificial immune systems and their applications. Berlin: Springer.

    MATH  Google Scholar 

  • de Boer, R. J., Segel, L. A., & Perelson, A. S. (1992). Pattern formation in one and two-dimensional shape space models of the immune system. Journal of Theoretical Biology, 155, 295–333.

    Article  Google Scholar 

  • de Castro, L. N., & Timmis, J. (2002). Artificial immune systems: a new computational intelligence approach. London: Springer.

    MATH  Google Scholar 

  • Fisher, P. B., et al. (2003). mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biology & Therapy, 2, S023–S037.

    Google Scholar 

  • Goncharova, L. B., Jacques, Y., Martin-Vide, C., Tarakanov, A. O., & Timmis, J. I. (2005). Biomolecular immune-computer: theoretical basis and experimental simulator. In Lecture notes in computer science (Vol. 3627, pp. 72–85). Berlin: Springer.

    Google Scholar 

  • Horn, R., & Johnson, Ch. (1986). Matrix analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Igney, F. H., & Krammer, P. H. (2002). Immune escape of tumors: apoptosis resistance and tumor counterattack. Journal of Leukocyte Biology, 71(6), 907–920.

    Google Scholar 

  • Jerne, N. K. (1973). The immune system. Scientific American, 229(1), 52–60.

    Article  Google Scholar 

  • Jerne, N. K. (1974). Toward a network theory of the immune system. Annals of Immunology, 125C, 373–389.

    Google Scholar 

  • Kourilsky, P., & Truffa-Bachi, P. (2001). Cytokine fields and the polarization of the immune response. Trends in Immunology, 22, 502–509.

    Article  Google Scholar 

  • Kurzrock, R. (2001). Cytokine deregulation in cancer. Biomedicine & Pharmacotherapy, 55(9–10), 543–547.

    Article  Google Scholar 

  • NASA (2004). Human immune system inspires NASA machine-software fault detector. NASA Bulletin, 26 October.

    Google Scholar 

  • NASA (2011). Russian scientist creates simulation of daily sea surface temperatures in the Caspian Sea. NASA Goddard Earth Sciences Data and Information Services Center News, 14 January 2011. Available at http://disc.sci.gsfc.nasa.gov/giovanni/gesNews/caspian_sea_sst_animation.

  • NOAA-NESDIS-National Oceanographic Data Center (1998). Climatic atlas of the Barents Sea. Available at http://www.nodc.noaa.gov/OC5/barsea/barindex.html.

  • Savino, W., & Dardenne, M. (2000). Neuroendocrine control of thymus physiology. Endocrine Reviews, 21(4), 412–443.

    Article  Google Scholar 

  • Tarakanov, A. O. (2008). Formal immune networks: self-organization and real-world applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (1st ed.). London: Springer.

    Google Scholar 

  • Tarakanov, A. O. (2008). Immunocomputing for intelligent intrusion detection. IEEE Computational Intelligence Magazine, 3(2), 22–30.

    Article  Google Scholar 

  • Tarakanov, A. O. (2009). Immunocomputing for geoinformation fusion and forecast. In Lecture notes in geoinformation and cartography (Vol. XIII, pp. 125–134). Berlin: Springer.

    Google Scholar 

  • Tarakanov, A., & Adamatzky, A. (2002). Virtual clothing in hybrid cellular automata. Kybernetes, 31(7–8), 394–405.

    Google Scholar 

  • Tarakanov, A., & Dasgupta, D. (2000). A formal model of an artificial immune system. Biosystems, 55(1–3), 151–158.

    Article  Google Scholar 

  • Tarakanov, A., & Dasgupta, D. (2002). An immunochip architecture and its emulation. In NASA/DoD conference on evolvable hardware (EH’02) (pp. 261–265). Los Alamitos: IEEE.

    Google Scholar 

  • Tarakanov, A. O., & Fuxe, K. G. (2010). Triplet puzzle: homologies of receptor heteromers. Journal of Molecular Neuroscience, 41(2), 294–303.

    Article  Google Scholar 

  • Tarakanov, A. O., & Tarakanov, Y. A. (2004). A comparison of immune and neural computing for two real-life tasks of pattern recognition. In Lecture notes in computer science (Vol. 3239, pp. 236–249). Berlin: Springer.

    Google Scholar 

  • Tarakanov, A. O., & Tarakanov, Y. A. (2005). A comparison of immune and genetic algorithms for two real-life tasks of pattern recognition. International Journal of Unconventional Computing, 1(4), 357–374.

    MathSciNet  Google Scholar 

  • Tarakanov, A. O., Skormin, V. A., & Sokolova, S. P. (2003). Immunocomputing: principles and applications. New York: Springer.

    MATH  Google Scholar 

  • Tarakanov, A. O., Goncharova, L. B., & Tarakanov, O. A. (2005a). A cytokine formal immune network. In Lecture notes in artificial intelligence (Vol. 3630, pp. 510–519). Berlin: Springer.

    Google Scholar 

  • Tarakanov, A. O., Kvachev, S. V., & Sukhorukov, A. V. (2005b). A formal immune network and its implementation for on-line intrusion detection. In Lecture notes in computer science (Vol. 3685, pp. 394–405). Berlin: Springer.

    Google Scholar 

  • Tarakanov, A., Prokaev, A., & Varnavskikh, E. (2007). Immunocomputing of hydroacoustic fields. International Journal of Unconventional Computing, 3(2), 123–133.

    Google Scholar 

  • Tarakanov, A. O., Fuxe, K. G., & Borroto-Escuela, D. O. (2012). Integrin triplets of marine sponges in human brain receptor heteromers. Journal of Molecular Neuroscience, 48(1), 154–160.

    Article  Google Scholar 

  • Vilcek, J., & Feldman, M. (2004). Historical review: cytokines as therapeutics and targets of therapeutics. Trends in Pharmacological Sciences, 25, 201–209.

    Article  Google Scholar 

  • Wall, L., Burke, F., Caroline, B., Smyth, J., & Balkwill, F. (2003). IFN-gamma induces apoptosis in ovarian cancer cells in vivo and in vitro. Clinical Cancer Research, 9, 2487–2496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander O. Tarakanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tarakanov, A.O., Borisova, A.V. (2013). Formal Immune Networks: Self-Organization and Real-World Applications. In: Prokopenko, M. (eds) Advances in Applied Self-Organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-4471-5113-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5113-5_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5112-8

  • Online ISBN: 978-1-4471-5113-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics