Skip to main content

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

The theory of self-organization has sufficiently matured over the last decades, and begins to find practical applications in many fields. Rather than analyzing and comparing underlying definitions of self-organization—the task complicated by a multiplicity of complementary approaches in literature; e.g., recent reviews (Boschetti et al. in Lecture notes in computer science, vol. 3684, pp. 573–580. Springer, Berlin, 2005; Prokopenko et al. in Complexity 15(1):11–28, 2009)—we investigate a possible design space for self-organizing systems, and examine ways to balance design and self-organization in the context of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Prigogine (1980), a thermodynamic system can be in a steady state while being not in equilibrium.

  2. 2.

    Statistical complexity is also an upper bound of predictive information, or structure, within the system (Bialek et al. 2001; De Wolf and Holvoet 2005).

  3. 3.

    Although Correia refers to this as adaptability, he in fact defines robustness.

References

  • Adamatzky, A. (2008). Emergence of traveling localizations in mutualistic-excitation media. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 333–354). London: Springer.

    Google Scholar 

  • Adamatzky, A., & Chua, L. (2013). Memristive excitable automata: structural dynamics, phenomenology, localizations and conductive pathways. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer.

    Google Scholar 

  • Ay, N., Bertschinger, N., Der, R., Güttler, F., & Olbrich, E. (2008). Predictive information and explorative behavior of autonomous robots. The European Physical Journal. B, Condensed Matter Physics, 63, 329–339.

    Article  MATH  Google Scholar 

  • Ay, N., Bernigau, H., Der, R., & Prokopenko, M. (2012a). Information-driven self-organization: the dynamical system approach to autonomous robot behavior. Theory in Biosciences, 131, 161–179.

    Article  Google Scholar 

  • Ay, N., Der, R., & Prokopenko, M. (2012b). Guided self-organization: perception-action loops of embodied systems. Theory in Biosciences, 131, 125–127.

    Article  Google Scholar 

  • Baldassarre, G. (2008). Self-organization as phase transition in decentralized groups of robots: a study based on Boltzmann entropy. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 129–149). London: Springer.

    Google Scholar 

  • Baldassarre, G., Parisi, D., & Nolfi, S. (2007). Measuring coordination as entropy decrease in groups of linked simulated robots. In Y. Bar-Yam (Ed.), Proceedings of the 5th international conference on complex systems (ICCS2004).

    Google Scholar 

  • Bauer, F., & Lizier, J. T. (2012). Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach. Europhysics Letters, 99(6), 68007.

    Article  Google Scholar 

  • Bialek, W., Nemenman, I., & Tishby, N. (2001). Complexity through nonextensivity. Physica. A, 302, 89–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Boedecker, J., Obst, O., Lizier, J., Mayer, N., & Asada, M. (2012). Information processing in echo state networks at the edge of chaos. Theory in Biosciences, 131, 205–213.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., & Camazine, S. (1997). Self-organisation in social insects. Trends in Ecology & Evolution, 12(5), 188–193.

    Article  Google Scholar 

  • Boschetti, F., & Gray, R. (2008). A Turing test for emergence. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 355–370). London: Springer.

    Google Scholar 

  • Boschetti, F., Prokopenko, M., Macreadie, I., & Grisogono, A.-M. (2005). Defining and detecting emergence in complex networks. In R. Khosla, R. J. Howlett, & L. C. Jain (Eds.), Lecture notes in computer science: Vol. 3684. Proceedings of the 9th international conference on knowledge-based intelligent information and engineering systems, KES 2005, Part IV, Melbourne, Australia, 14–16 September 2005 (pp. 573–580). Berlin: Springer.

    Chapter  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Capdepuy, P., Polani, D., & Nehaniv, C. L. (2012). Perception-action loops of multiple agents: informational aspects and the impact of coordination. Theory in Biosciences, 131(3), 149–159.

    Article  Google Scholar 

  • Casti, J. L. (1991). Chaos, Gödel and truth. In J. L. Casti & A. Karlqvist (Eds.), Beyond belief: randomness, prediction, and explanation in science. Boca Raton: CRC Press.

    Google Scholar 

  • Cools, S.-B., Gershenson, C., & D’Hooghe, B. (2008). Self-organizing traffic lights: a realistic simulation. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 41–50). London: Springer.

    Chapter  Google Scholar 

  • Cooper, S. B. (2010). Incomputability, emergence and the Turing universe. Theory Decis. Libr. A, 46, 135–153.

    Google Scholar 

  • Correia, L. (2006). Self-organisation: a case for embodiment. In C. Gershenson & T. Lenaerts (Eds.), Proceedings of the evolution of complexity workshop at artificial life X: the 10th international conference on the simulation and synthesis of living systems (pp. 111–116).

    Google Scholar 

  • Crutchfield, J. P. (1994). The calculi of emergence: computation, dynamics, and induction. Physica. D, 75, 11–54.

    Article  MATH  Google Scholar 

  • Crutchfield, J. P., Mitchell, M., & Das, R. (1998). The evolutionary design of collective computation in cellular automata (Technical Report 98-09-080). Santa Fe Institute Working Paper, available at http://www.santafe.edu/projects/evca/Papers/EvDesign.html.

  • Czap, H., Unland, R., Branki, C., & Tianfield, H. (2005). Frontiers in artificial intelligence and applications: Vol. 135. Self-organization and autonomic informatics (I). Amsterdam: IOS Press.

    Google Scholar 

  • De Wolf, T., & Holvoet, T. (2005). Emergence versus self-organisation: different concepts but promising when combined. In S. Brueckner, G. D. M. Serugendo, A. Karageorgos, & R. Nagpal (Eds.), Engineering self-organising systems (pp. 1–15). Berlin: Springer.

    Chapter  Google Scholar 

  • Der, R., Steinmetz, U., & Pasemann, F. (1999). Homeokinesis—a new principle to back up evolution with learning. In Concurrent systems engineering series (Vol. 55, pp. 43–47).

    Google Scholar 

  • Gershenson, C. (2012). Guiding the self-organization of random Boolean networks. Theory in Biosciences, 131(3), 181–191.

    Article  Google Scholar 

  • Haken, H. (1983a). Advanced synergetics: instability hierarchies of self-organizing systems and devices. Berlin: Springer.

    MATH  Google Scholar 

  • Haken, H. (1983b). Synergetics, an introduction: nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. New York: Springer. 3rd rev. enl. ed.

    MATH  Google Scholar 

  • Haken, H. (1988). Information and self-organization: a macroscopic approach to complex systems. Berlin: Springer.

    MATH  Google Scholar 

  • Heylighen, F. (2000). Self-organization. In F. Heylighen, C. Joslyn, & V. Turchin (Eds.), Principia Cybernetica web. Brussels: Principia Cybernetica. Available at http://pespmc1.vub.ac.be/SELFORG.html.

    Google Scholar 

  • Hofstadter, D. R. (1989). Gödel, Escher, Bach: an eternal golden braid. New York: Vintage Books.

    Google Scholar 

  • Hogg, T. (2008). Distributed control of microscopic robots in biomedical applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 147–174). London: Springer.

    Chapter  Google Scholar 

  • Hoschke, N., Lewis, C. J., Price, D. C., Scott, D. A., Gerasimov, V., & Wang, P. (2008). A self-organizing sensing system for structural health monitoring of aerospace vehicles. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 51–75). London: Springer.

    Chapter  Google Scholar 

  • Hoschke, N., Price, D. C., & Scott, D. A. (2013). Self-organizing sensing of structures: monitoring a space vehicle thermal protection system. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer.

    Google Scholar 

  • Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., & Fowler, H. (1980). Foraging by bucket-brigade in leafcutter ants. Biotropica, 12(3), 210–213.

    Article  Google Scholar 

  • Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. A. (2002). Spatiotemporal forward solution of the eeg and meg using network modeling. IEEE Transactions on Medical Imaging, 21(5), 493–504.

    Article  Google Scholar 

  • Kauffman, S. A. (2000). Investigations. Oxford: Oxford University Press.

    Google Scholar 

  • Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2004). Organization of the information flow in the perception-action loop of evolved agents. In Proceedings of 2004 NASA/DoD conference on evolvable hardware (pp. 177–180). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  • Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005). All else being equal be empowered. In M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes of computer science: Vol. 3630. Proceedings of the 8th European conference on advances in artificial life, ECAL 2005, Canterbury, UK, 5–9 September 2005 (pp. 744–753). Berlin: Springer.

    Google Scholar 

  • Klyubin, A., Polani, D., & Nehaniv, C. (2007). Representations of space and time in the maximization of information flow in the perception-action loop. Neural Computation, 19(9), 2387–2432.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Langton, C. (1991). Computation at the edge of chaos: phase transitions and emergent computation. In S. Forest (Ed.), Emergent computation. Cambridge: MIT Press.

    Google Scholar 

  • Lee, Y. C., & Zomaya, A. Y. (2008). Immune system support for scheduling. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 247–270). London: Springer.

    Chapter  Google Scholar 

  • Liljenström, H., & Svedin, U. (2005). System features, dynamics, and resilience—some introductory remarks. In H. Liljenström & U. Svedin (Eds.), MICRO-MESO-MACRO: addressing complex systems couplings (pp. 1–16). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Lizier, J. T., Prokopenko, M., Tanev, I., & Zomaya, A. Y. (2008a). Emergence of glider-like structures in a modular robotic system. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Proceedings of the eleventh international conference on the simulation and synthesis of living systems (ALife XI), Winchester, UK (pp. 366–373). Cambridge: MIT Press.

    Google Scholar 

  • Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008b). The information dynamics of phase transitions in random Boolean networks. In S. Bullock, J. Noble, R. Watson, & M. A. Bedau (Eds.), Proceedings of the eleventh international conference on the simulation and synthesis of living systems (ALife XI), Winchester, UK (pp. 374–381). Cambridge: MIT Press.

    Google Scholar 

  • Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008c). Local information transfer as a spatiotemporal filter for complex systems. Physical Review E, 77(2), 026110.

    Article  MathSciNet  Google Scholar 

  • Lizier, J. T., Prokopenko, M., & Cornforth, D. J. (2009). The information dynamics of cascading failures in energy networks. In Proceedings of the European conference on complex systems (ECCS), Warwick, UK (p. 54). ISBN 978-0-9554123-1-8.

    Google Scholar 

  • Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2010). Information modification and particle collisions in distributed computation. Chaos, 20(3), 037109.

    Article  MathSciNet  Google Scholar 

  • Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J.-D., & Prokopenko, M. (2011a). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. Journal of Computational Neuroscience, 30(1), 85–107.

    Article  MathSciNet  Google Scholar 

  • Lizier, J. T., Pritam, S., & Prokopenko, M. (2011b). Information dynamics in small-world Boolean networks. Artificial Life, 17(4), 293–314.

    Article  Google Scholar 

  • Lizier, J. T., Atay, F. M., & Jost, J. (2012a). Information storage, loop motifs, and clustered structure in complex networks. Physical Review E, 86(2), 026110.

    Article  Google Scholar 

  • Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012b). Coherent information structure in complex computation. Theory in Biosciences, 131(3), 193–203.

    Article  Google Scholar 

  • Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012c). Local measures of information storage in complex distributed computation. Information Sciences, 208, 39–54.

    Article  Google Scholar 

  • Macias, N. J., & Durbeck, L. J. K. (2008). Self-organizing digital systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 177–215). London: Springer.

    Chapter  Google Scholar 

  • Macias, N. J., & Durbeck, L. J. K. (2013). Self-organizing computing systems: songline processors. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer.

    Google Scholar 

  • Martius, G., & Herrmann, J. M. (2012). Variants of guided self-organization for robot control. Theory in Biosciences, 131(3), 129–137.

    Article  Google Scholar 

  • Mathews, G., & Durrant-Whyte, H. (2013). Decentralised decision making for ad-hoc multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer.

    Google Scholar 

  • Mathews, G., Durrant-Whyte, H., & Prokopenko, M. (2008). Decentralized decision making for multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 77–103). London: Springer.

    Chapter  Google Scholar 

  • Miller, J. F., Job, D., & Vassilev, V. K. (2000). Principles in the evolutionary design of digital circuits—Part I. Genetic Programming and Evolvable Machines, 1(1), 8–35.

    Article  Google Scholar 

  • Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Systems, 7, 89–139.

    MATH  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: a universal concept in nonlinear science. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Piraveenan, M., Prokopenko, M., & Zomaya, A. Y. (2009a). Assortativeness and information in scale-free networks. The European Physical Journal. B, Condensed Matter Physics, 67, 291–300.

    Article  Google Scholar 

  • Piraveenan, M., Prokopenko, M., & Zomaya, A. Y. (2009b). Assortativity and growth of Internet. The European Physical Journal. B, Condensed Matter Physics, 70, 275–285.

    Article  Google Scholar 

  • Piraveenan, M., Prokopenko, M., & Hossain, L. (2012). Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks. PLoS ONE, 8(1), e53095. doi:10.1371/journal.pone.0053095

    Article  Google Scholar 

  • Polani, D. (2003). Measuring self-organization via observers. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), Advances in artificial life—proceedings of the 7th European conference on artificial life (ECAL), Dortmund (pp. 667–675). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Polani, D. (2008). Foundations and formalizations of self-organization. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 19–37). London: Springer.

    Chapter  Google Scholar 

  • Polani, D., Sporns, O., & Lungarella, M. (2007). How information and embodiment shape intelligent information processing. In M. Lungarella, F. Iida, J. Bongard, & R. Pfeifer (Eds.), Lecture notes in computer science: Vol. 4850. Proceedings of the 50th anniversary summit of artificial intelligence, New York (pp. 99–111). Berlin: Springer.

    Google Scholar 

  • Prigogine, I. (1980). From being to becoming: time and complexity in the physical sciences. San Francisco: Freeman.

    Google Scholar 

  • Prokopenko, M. (2009). Guided self-organization. HFSP Journal, 3(5), 287–289.

    Article  Google Scholar 

  • Prokopenko, M., Piraveenan, M., & Wang, P. (2005a). On convergence of dynamic cluster formation in multi-agent networks. In M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes in computer science: Vol. 3630. Proceedings of the 8th European conference on advances in artificial life, ECAL 2005, Canterbury, UK, 5–9 September 2005 (pp. 884–894). Berlin: Springer.

    Google Scholar 

  • Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D. C., & Poulton, G. T. (2005b). On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Robotics and Autonomous Systems, 53(1), 36–58.

    Article  Google Scholar 

  • Prokopenko, M., Wang, P., & Price, D. C. (2005c). Complexity metrics for self-monitoring impact sensing networks. In J. Lohn, D. Gwaltney, G. Hornby, R. Zebulum, D. Keymeulen, & A. Stoica (Eds.), Proceedings of 2005 NASA/DoD conference on evolvable hardware (EH-05), Washington DC, USA, 29 June–1 July 2005 (pp. 239–246). Los Alamitos: IEEE Computer Society.

    Chapter  Google Scholar 

  • Prokopenko, M., Wang, P., Price, D. C., Valencia, P., Foreman, M., & Farmer, A. J. (2005d). Self-organizing hierarchies in sensor and communication networks. Artificial Life, 11(4), 407–426. Special Issue on Dynamic Hierarchies.

    Article  Google Scholar 

  • Prokopenko, M., Gerasimov, V., & Tanev, I. (2006a). Evolving spatiotemporal coordination in a modular robotic system. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco, J.-A. Meyer, O. Miglino, & D. Parisi (Eds.), Lecture notes in computer science: Vol. 4095. From animals to animats 9: 9th international conference on the simulation of adaptive behavior (SAB 2006), Rome, Italy, 25–29 September 2006 (pp. 558–569).

    Chapter  Google Scholar 

  • Prokopenko, M., Gerasimov, V., & Tanev, I. (2006b). Measuring spatiotemporal coordination in a modular robotic system. In L. Rocha, L. Yaeger, M. Bedau, D. Floreano, R. Goldstone, & A. Vespignani (Eds.), Artificial life X: proceedings of the 10th international conference on the simulation and synthesis of living systems (pp. 185–191). Bloomington: MIT Press.

    Google Scholar 

  • Prokopenko, M., Poulton, G. T., Price, D. C., Wang, P., Valencia, P., Hoschke, N., Farmer, A. J., Hedley, M., Lewis, C., & Scott, D. A. (2006c). Self-organising impact sensing networks in robust aerospace vehicles. In J. Fulcher (Ed.), Advances in applied artificial intelligence (pp. 186–233). Hershey: Idea Group.

    Chapter  Google Scholar 

  • Prokopenko, M., Boschetti, F., & Ryan, A. J. (2009). An information-theoretic primer on complexity, self-organization, and emergence. Complexity, 15(1), 11–28.

    Article  MathSciNet  Google Scholar 

  • Prokopenko, M., Lizier, J. T., Obst, O., & Wang, X. R. (2011). Relating Fisher information to order parameters. Physical Review E, 84(4), 041116.

    Article  Google Scholar 

  • Sahin, E., & Spears, W. M. (2004). Revised selected papers. In Lecture notes in computer science: Vol. 3342. Proceedings of SAB-2004 international workshop on swarm robotics, Santa Monica, CA, USA, 17 July 2004.

    Google Scholar 

  • Scaruffi, P. (2003). Thinking about thought: a primer on the new science of mind, towards a unified understanding of mind, life and matter. San Jose: Writers Club Press.

    Google Scholar 

  • Schlegel, T., & Kowalczyk, R. (2008). Self-organizing nomadic services in grids. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 217–245). London: Springer.

    Chapter  Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.

    Article  Google Scholar 

  • Shalizi, C. (2001). Causal architecture, complexity and self-organization in time series and cellular automata. PhD thesis, University of Michigan. Available at http://www.cscs.umich.edu/~crshalizi/thesis/.

  • Shalizi, C. R., Shalizi, K. L., & Haslinger, R. (2004). Quantifying self-organization with optimal predictors. Physical Review Letters, 93(11), 118701-1-4.

    Article  Google Scholar 

  • Tanev, I. (2008). Learning mutation strategies for evolution and adaptation of a simulated snakebot. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 105–127). London: Springer.

    Chapter  Google Scholar 

  • Tanev, I., Ray, T., & Buller, A. (2005). Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions on Robotics, 21, 632–645.

    Article  Google Scholar 

  • Tarakanov, A. O. (2008). Formal immune networks: self-organization and real-world applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 271–290). London: Springer.

    Chapter  Google Scholar 

  • Tarakanov, A. O., & Borisova, A. V. (2013). Formal immune networks: self-organization and real-world applications. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (2nd ed.). London: Springer.

    Google Scholar 

  • Vande Moere, A. (2008). A model for self-organizing data visualization using decentralized multi-agent systems. In M. Prokopenko (Ed.), Advances in applied self-organizing systems (pp. 291–324). London: Springer.

    Chapter  Google Scholar 

  • Volman, M. J. M. (1997). Rhythmic coordination dynamics in children with and without a developmental coordination disorder. PhD dissertation, University of Groningen, available at http://irs.ub.rug.nl/ppn/163776687.

  • Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wang, X. R., Lizier, J. T., & Prokopenko, M. (2010). A Fisher information study of phase transitions in random Boolean networks. In H. Fellermann, M. Dörr, M. M. Hanczyc, L. L. Laursen, S. Maurer, D. Merkle, P.-A. Monnard, K. Stoy, & S. Rasmussen (Eds.), Proceedings of the 12th international conference on the synthesis and simulation of living systems (Alife XII), Odense, Denmark (pp. 305–312). Cambridge: MIT Press.

    Google Scholar 

  • Wang, X. R., Lizier, J. T., & Prokopenko, M. (2011). Fisher information at the edge of chaos in random Boolean networks. Artificial Life, 17(4), 315–329.

    Article  Google Scholar 

  • Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2012). Quantifying and tracing information cascades in swarms. PLoS ONE, 7(7), e40084.

    Article  Google Scholar 

  • Woese, C. R. (2004). A new biology for a new century. Microbiology and Molecular Biology Reviews, 68(2), 173–186.

    Article  Google Scholar 

  • Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D, 10.

    Google Scholar 

  • Wuensche, A. (1999). Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the z parameter. Complexity, 4(3), 47–66.

    Article  MathSciNet  Google Scholar 

  • Zambonelli, F., & Rana, O. F. (2005). Self-organization in distributed systems engineering. Special Issue of IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 35(3).

    Google Scholar 

Download references

Acknowledgements

The Author would like to thank members of the discussion group on “Entropy and self-organisation in multi-agent systems”, particularly Vadim Gerasimov, Nigel Hoschke, Joseph Lizier, George Mathews, Mahendra Piraveenan, and Don Price. The support of the CSIRO Emergence interaction task and the CSIRO Complex Systems Science Theme is gratefully acknowledged. Special thanks to Fabio Boschetti, Tony Farmer, Tomonari Furukawa, Carlos Gershenson, Geoff James, Antonio Lafusa, Ron Li, Abhaya Nayak, Oliver Obst, Daniel Polani, Geoff Poulton, Alex Ryan, Ivan Tanev, Tino Schlegel, Phil Valencia, and X. Rosalind Wang for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Prokopenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Prokopenko, M. (2013). Design Versus Self-Organization. In: Prokopenko, M. (eds) Advances in Applied Self-Organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-4471-5113-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5113-5_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5112-8

  • Online ISBN: 978-1-4471-5113-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics