Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, the fuel cell and fuel cell system basics and their associated power electronic converter topologies will be introduced. The first part focuses on the introduction of different fuel cell technologies. The fuel cell characteristic polarization curve and dynamic behavior will be discussed in general. Two control-oriented, ready-to-use models for proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC) will be presented with detailed equations. The second part focuses on the introduction of different power converter topologies for fuel cell use. The power electronic particularity for a fuel cell system will be introduced. A state-of-art of different converter topologies and their highlights and drawbacks for a fuel cell system will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NASA (2004), The Gemini Program, available from NASA history website. http://www-pao.ksc.nasa.gov/history/gemini/gemini.htm

  2. Carl HH, Andrew H, Wolf V (2007) Electrochemistry, 2nd edn. Wiley-VCH Verlag GmbH. ISBN-10: 352731069X, ISBN-13: 978-3527310692

    Google Scholar 

  3. Corrêa JM, Farret FA, Canha LN, Simões MG (2004) An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans Ind Electron 51(5):10

    Article  Google Scholar 

  4. Gao F, Blunier B, Miraoui A, El-Moudni A (2010) Proton exchange membrane fuel cell multi-physical dynamics and stack spatial non-homogeneity analyses. J Power Sources 195(22):7609–7626

    Article  Google Scholar 

  5. O’Hayre R, Cha S-W, Colella W, Prinz FB (2005) Fuel cell fundamentals, 1st edn. Wiley, New York, p 409

    Google Scholar 

  6. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester

    Google Scholar 

  7. Gao F, Blunier B, Miraoui A, Moudni AE (2010) A multiphysics dynamic 1D model of a proton exchange membrane fuel cell stack for real time simulation. IEEE Trans Ind Electron 26:184–194

    Google Scholar 

  8. Bird R, Stewart W, Lightfoot E (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  9. Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):9

    Article  Google Scholar 

  10. Costamagna P, Selimovic A, Del Borghi M, Agnewc G (2004) Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chem Eng J 102:61–69

    Article  Google Scholar 

  11. Colclasure AM, Sanandaji BM, Vincent TL, Kee RJ (2010) Modeling and control of tubular solid-oxide fuel cell systems. I: physical models and linear model reduction. J Power Sources. doi:http://dx.doi.org/10.1016/j.jpowsour.2010.06.074

  12. Choi D, Lee B, Choi S, Won C, Yoo D (2005) A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems. J Power Sources 152:245–255

    Article  Google Scholar 

  13. Lee BK, Fahimi B, Ehsani M (2011) Overview of reduced parts converter topologies for ac motor drives. In: IEEE power electronics specialist conference, pp 2019–2024

    Google Scholar 

  14. Lee B, Hong J, Ehsani M (2003) Generalized design methodology of reduced parts converters for low cost bldc motor drives. In: IEEE applied power electronics conference, pp 277–280

    Google Scholar 

  15. Erickson R, DC–DC power converters” Wiley Encyclopedia of Electrical and Electronics Engineering DC–DC Power Converters, pp 80 309–0425 15 JUN 2007. doi:10.1002/047134608X.W5808.pub2

  16. Song Y (2004) Analysis and design of high frequency link power conversion systems for fuel cell power conditioning. PhD dissertation, Texas A&M University, Texas

    Google Scholar 

  17. Middlebrook R (1988) Small-signal modeling of pulse-width modulated switched-mode power converters. Proc IEEE 76(4):343–354

    Article  Google Scholar 

  18. Uzunoglu M, Alam M (2007) Dynamic modeling, design and simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications. Energy Convers Manage 48(5):1544–1553

    Article  Google Scholar 

  19. Middlebrook RD (1981) Power electronics: topologies, modeling, and measurement. Proc IEEE Int Symp Circ Syst PEL-1:76–89

    Google Scholar 

  20. Fontes G, Turpin C, Astier S, Meynard T (2007) Interactions between fuel cells and power converters: Influence of current harmonics on a fuel cell stack. Power Electron, IEEE Trans 22(2):670–678

    Article  Google Scholar 

  21. Tipton C, Urciuoli D, Porschet D (2004) Development of a 90 kW, two-phase, bi-directional DC–DC converter for power dense applications, Dec 2004, 3p. http://www.ntis.gov/search/product.aspx?ABBR=ADA433112

  22. Li H, Peng F, Lawler J (2001) A natural ZVS high-power bi-directional DC–DC converter with minimum number of devices. In Conference record of the IEEE industry applications conference, vol 3, pp 1874–1881

    Google Scholar 

  23. Eckardt B, Hofmann A, Zeltner S, Marz M (2006) Automotive powertrain DC/DC converter with 25 kW/dm3 by using SiC diodes. In: Proceedings of 4th international conference on integrated power systems, pp 7–9

    Google Scholar 

  24. Zhang M, Jiang Y, Lee F, Jovanovic M (1995) Single-phase three-level boost power factor correction converter. In: Applied power electronics conference and exposition, APEC’95, vol 1, pp 434–439

    Google Scholar 

  25. Teodorescu R, Kjaer S, Munk-Nielsen S, Blaabjerg F, Pedersen J (2001) Comparative analysis of three interleaved boost power factor corrected topologies in DCM. In: IEEE 32nd annual power electronics specialists conference, 2001. PESC, vol 1

    Google Scholar 

  26. Kabalo M, Blunier B, Bouquain D, Miraoui A (2011) Comparison analysis of high voltage ratio low input current ripple floating interleaving boost converters for fuel cell applications. In: Vehicle Power and Propulsion Conference (VPPC). IEEE, pp 1, 6, 6–9 Sept. doi:10.1109/VPPC.2011.6043101

  27. Peng F (2003) Z-source inverter. Ind Appl, IEEE Trans 39(2):504–510

    Article  Google Scholar 

  28. Rajakaruna S, Jayawickrama Y (2005) Designing impedance network of z-source inverters. In Power engineering conference. IPEC the 7th international. IEEE, pp 962–967

    Google Scholar 

  29. Fang X, Qian Z, Peng F (2005) Single-phase z-source pwm ac–ac converters. Power Electron Lett, IEEE 3(4):121–124

    Article  Google Scholar 

  30. Peng F, Joseph A, Wang J, Shen M, Chen L, Pan Z, Ortiz-Rivera E, Huang Y (2005) Z-source inverter for motor drives. Power Electron, IEEE Trans 20(4):857–863

    Article  Google Scholar 

  31. Loh P, Gajanayake C, Vilathgamuwa D, Blaabjerg F (2008) Evaluation of resonant damping techniques for z-source current-type inverter. Power Electron, IEEE Trans 23(4):2035–2043

    Article  Google Scholar 

  32. Shen M, Peng F (2005) Operation modes and characteristics of the z-source inverter with small inductance. In: Industry applications conference, 2005. Fourteenth IAS annual meeting. conference record of the 2005, IEEE, vol 2, pp 1253–1260

    Google Scholar 

  33. De Doncker R, Jacbos J, Averberg A (2004) A novel three-phase dc–dc converter for high-power applications. PESC 3:1861–1867

    Google Scholar 

  34. Lai J, Nelson D (2007) Energy management power converters in hybrid electric and fuel cell vehicles. Proc IEEE 95(4):766–777

    Article  Google Scholar 

  35. Lai J (2005) A high-performance V6 converter for fuel cell power conditioning system. In: IEEE conference vehicle power and propulsion, p 7

    Google Scholar 

  36. Sabate J, Vlatkovic V, Ridley R, Lee F, Cho B (1990) Design considerations for high-voltage high-power full-bridge zero-voltage-switched pwm converter. In: Applied power electronics conference and exposition, 1990. APEC’90, conference proceedings, fifth annual. IEEE, 1990, pp 275–284

    Google Scholar 

  37. Hua G, Lee F, Jovanovic M (1993) An improved full-bridge zero-voltage-switched pwm converter using a saturable inductor. Power Electron, IEEE Trans 8(4):530–534

    Article  Google Scholar 

  38. Liu C, Johnson A, Lai J (2007) A novel three-phase high-power soft-switched dc–dc converter for low-voltage fuel cell applications. IEEE, 2005 vol 41(6), pp 1691–1697

    Google Scholar 

  39. Wang K, Lin C, Zhu L, Qu D, Lee F, Lai v (1998) Bi-directional dc to dc converters for fuel cell systems. Power Electron Transp, pp 47–51

    Google Scholar 

  40. Lai J, Peng F (1996) Multilevel converters-a new breed of power converters. IEEE Trans Ind Appl 32(3):509–517

    Article  Google Scholar 

  41. Severns R (2008) Snubber circuits for power electronics. Rudolf Severns

    Google Scholar 

  42. Lee D, Lee F (1997) Novel zero-voltage-transition and zero-current-transition pulse-width-modulation converters. In: Power electronics specialists conference. PESC’97 record. 28th annual IEEE, vol 1, pp 233–239

    Google Scholar 

  43. Martins D, de Seixas F, Brilhante J, Barbi I (1993) A family of dc-to-dc pwm converters using a new zvs commutation cell. In: Power electronics specialists conference. PESC’93 record, 24th annual IEEE, pp 524–530

    Google Scholar 

  44. Rylko M, Egan M, Hayes J, Power D (2007) A soft-switched bi-directional dc–dc converter. In: Power electronics and applications, European conference on IEEE, pp 1–10

    Google Scholar 

  45. Abu-Qahouq J, Batarseh I (2000) Generalized analysis of soft-switching dc–dc converters. In: Power electronics specialists conference. PESC IEEE 31st annual IEEE, vol 1, pp 185–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gao, F., Kabalo, M., Rylko, M.S., Blunier, B., Miraoui, A. (2013). Fuel Cell System. In: Chakraborty, S., Simões, M., Kramer, W. (eds) Power Electronics for Renewable and Distributed Energy Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5104-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5104-3_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5103-6

  • Online ISBN: 978-1-4471-5104-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics