Skip to main content

Power Electronics for Smart Distribution Grids

  • Chapter
  • First Online:
Power Electronics for Renewable and Distributed Energy Systems

Abstract

The operation of future electricity grids will have a multi-disciplinary nature via the merging of energy and communication infrastructures, and the interaction of state-of-the-art technologies such as power electronics, computational intelligence, signal processing, or smart metering. This interoperability presents challenges to optimize system performance by improving synergy between actors, i.e., producers, consumers, and network operators. This chapter tackles a part of these challenges by focusing on the role of power electronics in smart grids. First, background information of emerging distribution systems, evolutionary changes, and enabling technologies is presented. Furthermore, a requirement of electronic-based interface systems with smart topologies and controls is explained. Finally, applications of smart interface systems are expounded via three examples: (1) smart inverters, (2) smart power router, and (3) virtual synchronous generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Department of Energy (2003) “Grid 2030” A national vision for electricity’s second 100 years. US Department of Energy. Available www.ferc.gov/eventcalendar/files/20050608125055-grid-2030.pdf. Cited 24 Apr 2012

  2. Lightner E (2008) Evolution and progress of smart grid development at the Department of Energy. FERC-NARUC Smart Grid Collaborative Workshop. Available http://www.narucmeetings.org/Presentations/Evolution%20and%20Progress%20of%20Smart%20Grid%20Development.pdf. Cited 24 Apr 2012

  3. US Congress (2007) Energy independence and security act of 2007 (EISA07). 110th US Congress

    Google Scholar 

  4. National Science and Technology Council (NSTC) (2011) A policy framework for the 21st century grid: Enabling our secure energy future. Executive office of the President: National science and technology council. Available http://www.whitehouse.gov/sites/default/files/microsites/ostp/nstc-smart-grid-june2011.pdf. Cited July 2011

  5. Strobel CD (2009) American recovery and reinvestment act of 2009 (ARRA09). J Corp Account Financ 20(5):83–85 (111th US Congress)

    Google Scholar 

  6. US Department of Energy (2011) Smart grid information clearinghouse. Available www.sgiclearinghouse.org. Cited July 2011

  7. (2011) Summary for Policymakers, International Panel on Climate Change, 11th Session of Working Group III of the IPCC, Abu Dhabi, United Arab Emirates

    Google Scholar 

  8. Locke G, Gallagher PD (2010) NIST framework and roadmap for Smart Grid interoperability standards, release 1.0. US Department of Commerce. Available http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf. Cited July 2011

  9. IEEE Guide for Smart Grid interoperability of energy technology and information technology operation with the electric power system (EPS), and end-use applications and loads. Institute of Electrical and Electronics Engineers (IEEE) Standard 2030. Sept 2011

    Google Scholar 

  10. International Electrotechnical Commission (IEC) (2011) Core IEC Standards. Available http://www.iec.ch/smartgrid/standards/. Cited July 2011

  11. Brown HE, Suryanarayanan S, Heydt GT (2010) Some characteristics of emerging distribution systems under the Smart Grid Initiative. Elsevier Elec J. doi:10.1016/j.tej.2010.05.005

    Google Scholar 

  12. Brown HE, Haughton DA, Heydt GT, Suryanarayanan S (2010) Some elements of design and operation of a smart distribution system. Transmission and distribution conference and exposition, 2010 IEEE PES. doi:10.1109/TDC.2010.5484491

  13. Armas JM, Suryanarayanan S (2009) A heuristic technique for scheduling a customer-driven residential distributed energy resource installation. Intelligent system applications to power systems, 2009. ISAP‘09. 15th international conference, pp 1–7. doi:10.1109/ISAP.2009.5352954

  14. Photovoltaics DG, Storage E (2009) IEEE application guide for IEEE Std 1547, IEEE Standard for interconnecting distributed resources with electric power systems. Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/IEEESTD.2008.4816078

  15. Inverters C (2005) Controllers and interconnection system equipment for use with distributed energy resources. UL 1741. Underwriters Laboratory (UL)

    Google Scholar 

  16. Deconinck G, Vanthournout K, Beitollahi et al (2008) A robust semantic overlay network for microgrid control applications. In: Lemos R et al (eds) A robust semantic overlay network for microgrid control applications. Springer, Berlin

    Google Scholar 

  17. La Poutre H, Kling WL, Cobben S (2009) Intelligent systems for green developments. ERCIM News 79:38–39

    Google Scholar 

  18. Suryanarayanan S, Mitra J, Biswas S (2010) A conceptual framework of hierarchically networked agent-based microgrid architecture. IEEE PES Trans Distrib Conf Exposition. doi:10.1109/TDC.2010.5484332

    Google Scholar 

  19. Carnieletto R, Brandão D, Suryanarayanan S et al (2011) A multifunctional single-phase voltage source inverter in perspective of the Smart Grid Initiative. IEEE Ind Apps Mag. doi:10.1109/MIAS.2010.939651

    Google Scholar 

  20. Malinowski M, Kazmierkowski MP, Trzynadlowski AM (2003) A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives. IEEE Trans Power Electron. doi:10.1109/TPEL.2003.818871

    Google Scholar 

  21. Sukegawa T, Kamiyama K, Takahashi J et al (1992) A multiple PW GTO line-side converter for unity power factor and reduced harmonics. IEEE Trans Ind Apps 28(6):1302–1308. doi:10.1109/28.175281

    Article  Google Scholar 

  22. Lindgren MB (1995) Feedforward-time efficient control of a voltage source converter connected to the grid by lowpass filters. Power Electron Spec Conf. doi:10.1109/PESC.1995.474942

    Google Scholar 

  23. Liserre M, Blaabjerg F, Hansen S (2005) Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans Ind Apps. doi:10.1109/TIA.2005.853373

    Google Scholar 

  24. Mao J, Wu G, Wu A et al (2011) Modeling and decoupling control of grid-connected voltage source inverter for wind energy applications. Adv Mat Res. doi:10.4028/www.scientific.net/AMR.213.369

    Google Scholar 

  25. Ko SH, Lee SR, Dehbonei H et al (2006) Application of voltage- and current-controlled voltage source inverters for distributed generation systems. IEEE Trans Energ Conv 21(3):782–792. doi:10.1109/TEC.2006.877371

    Article  Google Scholar 

  26. Carnieletto R, Ramos DB, Simões MG, et al (2009) Simulation and analysis of DQ frame and P + Resonant controls for voltage source inverter to distributed generation. Power Electron Conf 104–109. doi: 10.1109/COBEP.2009.5347677

  27. Hassaine L, Olias E, Quintero J et al (2009) Digital power factor control and reactive power regulation for grid-connected photovoltaic inverter. Renewable Energy 34(1):315–321. doi:10.1016/j.renene.2008.03.016

    Article  Google Scholar 

  28. Kjaer SB, Pedersen JK, Blaabjerg F (2005) A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind Apps. doi:10.1109/TIA.2005.853371

    Google Scholar 

  29. Duarte JL, van Zwam A, Wijnands C, et al (1999) Reference frames fit for controlling PWM rectifiers. IEEE Trans Ind Elec 46(3):628–630. doi: 10.1109/41.767071

    Google Scholar 

  30. Akagi H, Kanazawa Y, Fujita K, et al (2007) Generalized theory of instantaneous reactive power and its application. Wiley, London, vol 103, pp 58–66, doi:10.1002/eej.4391030409

  31. Ohnishi T (1991) Three phase PWM converter/inverter by means of instantaneous active and reactive power control. Indus Electron Control Instrum. doi:10.1109/IECON.1991.239183

    Google Scholar 

  32. Ortjohann E, Lingemann M, Mohd A et al (2008) A general architecture for modular smart inverter. Indus Electron. doi:10.1109/ISIE.2008.4676908

    Google Scholar 

  33. Roshan A, Burgos B, Baisden BC, et al (2007) A D-Q frame controller for a full-bridge single phase inverter used in small distributed power generation systems. Applied Power Electronics Conference, APEC 2007–Twenty Second Annual IEEE. doi:10.1109/APEX.2007.357582

  34. Miranda UA, Aredes M, Rolim LGB (2005) A DQ synchronous reference frame current control for single-phase converters. IEEE Power Electron Spec Conf. doi:10.1109/PESC.2005.1581809

    Google Scholar 

  35. Math works Inc (2011) SimPowerSystems: model and simulate electrical power systems. Available: http://www.mathworks.com/products/simpower/. Cited July 2011

  36. Nguyen PH, Kling WL, Ribeiro PF (2011) Smart power router: a flexible agent-based converter interface in active distribution networks. IEEE Trans Smrt Gr. doi:10.1109/TSG.2011.2159405

    Google Scholar 

  37. Telecom Italia SpA (2010) Java agent development framework. Available: http://jade.tilab.com/. Cited 24 Apr 2012

  38. Ishchenko A, Kling WL, Myrzik J (2009) Control aspects and the design of a small-scale test virtual power plant. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. doi: 10.1109/PES.2009.5260225

  39. Driesen J, Visscher K (2008) Virtual synchronous generators. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. doi: 10.1109/PES.2008.4596800

  40. (2010) Virtual synchronous project. European Union. Available http://www.vsync.eu/. Cited July 2011

  41. Xue XY, Chang L, Kjaer SB et al (2004) Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans Power Electron. doi:10.1109/TPEL.2004.833460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong H. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Brandão, D.I., Carnieletto, R., Nguyen, P.H., Ribeiro, P.F., Simões, M.G., Suryanarayanan, S. (2013). Power Electronics for Smart Distribution Grids. In: Chakraborty, S., Simões, M., Kramer, W. (eds) Power Electronics for Renewable and Distributed Energy Systems. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5104-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5104-3_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5103-6

  • Online ISBN: 978-1-4471-5104-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics