Fast Response Energy Storage Systems

  • Juan M. Carrasco
  • Eduardo Galván
  • Sergio Vázquez
  • Luis García-Tabarés
  • Marcos Lafoz
Part of the Green Energy and Technology book series (GREEN)


Fast Response Energy Storage describes several technologies characterized by the ability to provide or to absorb a high amount of electrical energy in a short period of time without diminishing the life time of the storage device. Major technologies discussed in this chapter are: Electric Double Layer Capacitors (EDLC) that store energy in the electrical field of a capacitor; Flywheels that do it as kinetic energy and Superconducting Magnets (SME) where energy is kept in the magnetic field of a lossless inductor. All these technologies can develop a wide range of different applications. In this way, they can support an increasing level of renewable energy sources penetration in the conventional grid by providing the necessary features. The most important are: Power quality issues, including grid frequency regulation and grid voltage stability; Smart grids development, including hybrid energy storage systems, like EDLC plus batteries, that support short-term and long-term necessities of the grid and electrical and hybrid vehicles as distributed energy storage systems. In this chapter, the basics for these technologies are presented, addressing information about the power converters needed to manage the energy of these devices. Besides, the most important applications regarding renewable energy integration are described, providing information about implemented real systems.


Pulse Width Modulate Energy Storage System Power Converter Electric Double Layer Capacitor Batterie Energy Storage System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ter-Gazarian A (1994) Energy Storage for Power Systems, IEE Energy Series. Peter Peregrinus, HitchinCrossRefGoogle Scholar
  2. 2.
    Ribeiro PF, Johnson BK, Crow ML, Arsoy A, Liu Y (2001b) Energy storage systems for advanced power applications. Proc IEEE 89(12):1744–1756CrossRefGoogle Scholar
  3. 3.
    Christen T, Carlen MW (2000) Theory of Ragone Plots. J Power Sources 91:210–216CrossRefGoogle Scholar
  4. 4.
    CAISO, Energy GE (2010) Integration of renewable resources—Operational requirements and generation fleet capability at 20% RPS. Available via
  5. 5.
    Milligan M, Lew D, Corbus D, Piwko R, Miller N, Clark K, Jordan G, Freeman L, Zavadil B, Schuerger M (2009) Large-scale wind integration studies in the United States: preliminary results. In: Proceeding of the 8th international workshop on large-scale integration of wind power and transmission networks for offshore wind farms, Bremen, Germany, 14–15 Oct 2009Google Scholar
  6. 6.
    Carrasco JM, Franquelo LG, Bialasiewicz JT, Galvan E, Guisado RCP, Prats MAM, Leon JI, Moreno N (2006) Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Elect 53(4):1002–1016CrossRefGoogle Scholar
  7. 7.
    Denholm P, Ela E, Kirby B, Milligan M (2010) The role of energy storage with renewable electricity generation. Available via
  8. 8.
    Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM (2010) Energy storage systems for transport and grid applications. IEEE Trans Ind Elect 57(12):3881–3895CrossRefGoogle Scholar
  9. 9.
    Kirby B, (2007) Ancillary services: technical and commercial insights. Available via
  10. 10.
    Makarov YV, Ma J, Lu S, Nguyen TB (2008) Assessing the value of regulation resources based on their time response characteristics. Tech. Rep. PNNL-17632, Pacific Northwest National Laboratory, Richland, WA, Jun 2008Google Scholar
  11. 11.
    Ribeiro FP, Johnson BK, Crow ML, Arsoy A, Liu Y (2001a) Energy storage systems for advanced power applications. Proc IEEE 89(12):1744–1756CrossRefGoogle Scholar
  12. 12.
    Lukic SM, Jian C, Bansal RC, Rodriguez F, Emadi A (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258–2267CrossRefGoogle Scholar
  13. 13.
    Iwasawa K, Inoue T, Koizumi K (2010) A novel voltage equalizer using series/parallel switching capacitors. In: proceeding of the IEEE international conference on digital sustainable energy technologies (ICSET), Sri Lanka, 6–9 December 2010Google Scholar
  14. 14.
    Thounthong P, Raël S, Davat B (2007) Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Trans Ind Elect 54(6):3225–3233CrossRefGoogle Scholar
  15. 15.
    Muyeen SM, Takahashi R, Murata T, Tamura J (2009) Integration of an energy capacitor system with a variable-speed wind generator. IEEE Trans Energy Convers 24(3):740–749CrossRefGoogle Scholar
  16. 16.
    Samosir AS, Yatim AHM (2010) Implementation of dynamic evolution control of bidirectional dc–dc converter for interfacing ultracapacitor energy storage to fuel-cell system. IEEE Trans Ind Elect 57(10):3468–3473CrossRefGoogle Scholar
  17. 17.
    Fakham H, Di L, Francois B (2011) Power control design of a battery charger in a hybrid active PV generator for load-following applications. IEEE Trans Ind Elect 58(1):85–94CrossRefGoogle Scholar
  18. 18.
    Liyan Q, Wei Q (2011) Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans Ind Appl 47(1):359–367CrossRefGoogle Scholar
  19. 19.
    Sang-Min K, Seung-Ki S (2006) Control of rubber tyred gantry crane with energy storage based on supercapacitor bank. IEEE Trans Power Electron 21(5):1420–1427CrossRefGoogle Scholar
  20. 20.
    Joon-Hwan L, Seung-Hwan L, Seung-Ki S (2009) Variable-speed engine generator with supercapacitor: Isolated power generation system and fuel efficiency. IEEE Trans Ind Appl 45(6):2130–2135CrossRefGoogle Scholar
  21. 21.
    Monai T, Takano I, Nishikawa H, Sawada Y (2004) A collaborative operation method between new energy-type dispersed power supply and EDLC. IEEE Trans Energy Convers 19(3):590–598CrossRefGoogle Scholar
  22. 22.
    Kinjo T, Senjyu T, Urasaki N, Fujita H (2006) Output leveling of renewable energy by electric double-layer capacitor applied for energy storage system. IEEE Trans Energy Convers 21(1):221–227CrossRefGoogle Scholar
  23. 23.
    Inoue S, Akagi H (2007) A Bidirectional dc–dc converter for an energy storage system with galvanic isolation. IEEE Trans Power Electron 22(6):2299–2306CrossRefGoogle Scholar
  24. 24.
    Haimin T, Kotsopoulos A, Duarte JL, Hendrix MAM (2008) Transformer-coupled multiport ZVS bidirectional dc–dc converter with wide input range. IEEE Trans Power Electron 23(2):771–781CrossRefGoogle Scholar
  25. 25.
    Maharjan L, Inoue S, Akagi H (2008) A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration. IEEE Trans Ind Appl 44(5):1621–1630CrossRefGoogle Scholar
  26. 26.
    Grbovic PJ, Delarue P, Le Moigne P, Bartholomeus P (2010) A bidirectional three-level dc–dc converter for the ultracapacitor applications. IEEE Trans Ind Elect 57(10):3415–3430CrossRefGoogle Scholar
  27. 27.
    Vilathgamuwa M, Jayasinghe S, Madawala U (2011) Diode-clamped three level inverter based battery/supercapacitor direct integration scheme for renewable energy systems. IEEE Trans Power Electron 26:3720–3729CrossRefGoogle Scholar
  28. 28.
    Ginsburg VL (1991) Superconductivity, superdiamagnetism, superfluidity. MIR Publishers, USSR, MoscowGoogle Scholar
  29. 29.
    Chu CW (1997) High-temperature superconducting materials: a decade of impressive advancement of Tc. IEEE Trans Appl Supercond 7(2):80–89CrossRefGoogle Scholar
  30. 30.
    Iwasa Y (1994) Case studies in superconducting magnets. Plenum Press, New YorkGoogle Scholar
  31. 31.
    Wilson MN (1987) Superconducting Magnets. Oxford University Press, USAGoogle Scholar
  32. 32.
    Boom RW, Peterson H (1972) Superconductive energy storage for power systems. IEEE Trans Magnetics 8(3):701–703CrossRefGoogle Scholar
  33. 33.
    Bautista A, Esteban P, Garcia-Tabares L, Peon G, Martinez E, Sese J, Camon A, Rillo C, Iturbe R (1997) Design, manufacturing and cold test of a superconducting coil and its cryostat for SMES applications. Trans Appl Supercond 7(2):853–856CrossRefGoogle Scholar
  34. 34.
    Juengst KP, Komarek P, Maurer W (1994) Use of superconductivity in energy storage. World Scientific, SingaporeGoogle Scholar
  35. 35.
    Tsutsui H, Kajita S, Ohata Y, Nomura S, Tsuji-Iio S, Shimada R (2004) FEM analysis of stress distribution in force-balanced coils. Trans Appl Supercond 14(2):750–753CrossRefGoogle Scholar
  36. 36.
    GE Industrial Systems & American Superconductors (2001) D-SMES. Available via
  37. 37.
    SuperPower (2010) Superconducting magnetic energy storage. Available via
  38. 38.
    Ackermann RA (1997) Cryogenic regenerative heat exchangers (International cryogenics monograph series). Plenum Press, New YorkCrossRefGoogle Scholar
  39. 39.
    Ali MH, Wu B, Dougal RA (2010) An overview of SMES applications in power and energy systems. IEEE Trans on Sust Ener 1(1):38–47CrossRefGoogle Scholar
  40. 40.
    Karasik V, Dixon K, Weber C, Batchelder B, Campbell G, Ribeiro P (1999) SMES for power utility applications: a review of technical and cost considerations. Trans Appl Supercond 9(2):541–546CrossRefGoogle Scholar
  41. 41.
    Ham WK, Hwang SW, Kim JH (2008) Active and reactive power control model of superconducting magnetic energy storage (SMES) for the improvement of power system stability. J Elect Eng Tech 3(1):1–7CrossRefGoogle Scholar
  42. 42.
    Rogers J, Boenig H, Schermer R, Hauer J (1985) Operation of the 30 MJ superconducting magnetic energy storage system in the bonneville power administration electrical grid. IEEE Trans Magn 21(2):752–755CrossRefGoogle Scholar
  43. 43.
    Iglesias IJ, Acero J (1995) Comparative study and simulation of optimal converter topologies for SMES. IEEE Trans Appl Supercond 5(2):254–257CrossRefGoogle Scholar
  44. 44.
    Zelaya H, Iglesias IJ, González O, Tamarit J (1997) Modulation and control of current source converters for high dynamic performance of induction motors. In: Proceeding of the european power electronics conference (EPE), Trondheim, 8–10 Sept 1997Google Scholar
  45. 45.
    Van der Broeck HW, Skundelny HC, Stanke GV (1988) Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Trans Ind Appl 24(10):142–150CrossRefGoogle Scholar
  46. 46.
    Iglesias IJ, Bautista A, Visiers M (1997) Experimental and simulated results of a SMES fed by current source inverter. IEEE Trans Appl Supercond 7(2):861–864CrossRefGoogle Scholar
  47. 47.
    Iglesias IJ, Acero J, Bautista A (1995) Comparative study between six and twelve pulse current source converter for SMES. In: Proceeding of the European power electronics conference (EPE), Sevilla, 19–21 Sept 1995Google Scholar
  48. 48.
    Genta G (1985) Kinetic energy storage: theory and practice of advanced flywheel systems. Butterworths, LondonGoogle Scholar
  49. 49.
    Active Power (2008) Understanding flywheel energy storage: does high speed really imply a better design? Available via
  50. 50.
    Genta G (1999) Vibration of structures and machines. Springer, New YorkCrossRefGoogle Scholar
  51. 51.
    Piller Power Systems (2010) UNIBLOCK UBT. Rotary UPS. Available via
  52. 52.
    Nasar SA, Boldea I, Unnerwher LE (1993) Permanent Magnets, Reluctance and Self-Synchronous Motors. CRC Press, USAGoogle Scholar
  53. 53.
    Tsao P (2003) An integrated flywheel energy storage system with homopolar inductor motor/generator and high frequency drive. IEEE Trans Ind Appl 39(6):1710–1725CrossRefGoogle Scholar
  54. 54.
    Active Power (2008) Integrated flywheel based uninterruptible power supply for broadcast applications. Available via
  55. 55.
    Hofmann H, Sanders SR (1996) Synchronous reluctance motor/alternator for flywheel energy storage systems. In: Proceeding of the IEEE power electronics in transportation (PET), Dearbon, 24–25 Oct 1996Google Scholar
  56. 56.
    Miller TJE (1993) Switched reluctance motors and their control. Magna Physics Publishing & Clarendon Press, OhioGoogle Scholar
  57. 57.
    Lafoz M, Calero J, Garcia-Tabares L, Ugena D, Portillo S, Vazquez C, Gutierrez JL, Tobajas C, Iglesias J, Martinez JC, Lucas J, Echeandía A, Echeandia J, Zuazo C (2007) The ACE2 system: A kinetic energy storage for railway substations. In: Proceeding of the electrical energy storage applications and technologies (EESAT), San Francisco, 23–26 Sept 2007Google Scholar
  58. 58.
    Powell JP, Jewell GW, Calverley SD, Howe D (2005) Iron loss in a modular rotor switched reluctance machine for the “More-Electric” aero-engine. IEEE Trans Magn 41(10):3934–3936CrossRefGoogle Scholar
  59. 59.
    Hanselman DC (1994) Brushless permanent-magnet motor design. McGraw-Hill, New YorkGoogle Scholar
  60. 60.
    Nagomy A, Dravid NV, Jansen RH, Kenny BH (2005) Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications. In: Proceeding of the IEEE international conference on electric machines and drives (ICEMD) San Antonio, 15 May 2005Google Scholar
  61. 61.
    Etxaniz I, Izpizua A, San Martin M, Arana J, Perez I (2007) Levitation techniques applications. Sens Lett 5(1):323–328CrossRefGoogle Scholar
  62. 62.
    Moon FC (1993) Superconducting Levitation. John Wiley & Sons, New YorkGoogle Scholar
  63. 63.
    Strasik M, Johnson PE, Day AC, Mittleider J, Higgins MD, Edwards J, Schindler JR, McCrary KE, McIver CR, Carlson D, Gonder JF, Hull JR (2007) Design fabrication and test of a 5kWh/100 kW flywheel energy storage utilizing a high-temperature superconducting bearing. IEEE Trans Appl Supercond 17(2):2133–2137CrossRefGoogle Scholar
  64. 64.
    Kangwon L, Bongsu K, Junseok K, Sangkwon J, Seung L (2007) Advanced design and experiment of a small-size flywheel energy storage system using a high-temperature superconductor bearing. Supercond Sci Technol 20(7):634–639CrossRefGoogle Scholar
  65. 65.
    Goncalves G, Andrade R, Ferreira AC (2007) Magnetic bearing sets for a flywheel system. IEEE Trans Appl Supercond 17(2):2150–2153CrossRefGoogle Scholar
  66. 66.
    Tsao P, Senesky M, Sanders S (2002) A synchronous homopolar machine for high-speed applications. In: Proceeding of the IEEE 37th IAS annual meeting conference record of the industrial applications society (IAS) Pittsburgh, 13–18 Oct 2002Google Scholar
  67. 67.
    Lipo TA, Vagati A, Malesani L, Fukao T (1992) Synchronous reluctance motors and drives—a new alternative. In: Proceeding of the IEEE 26th IAS annual meeting conference record of the industrial applications society (IAS) Houston, 4–9 Oct 1992Google Scholar
  68. 68.
    Park JD, Kalev C, Hofmann H (2008) Modeling and control of solid-rotor synchronous reluctance machines based on rotor flux dynamics. IEEE Trans Magn 44(12):4639–4647CrossRefGoogle Scholar
  69. 69.
    Krishnan R (2001) Switched reluctance motor drives. Modeling, simulation, analysis, design and applications. CRC Press, USAGoogle Scholar
  70. 70.
    Malesani L, Tenti P (1990) A novel hysteresis current method for current-controlled voltage source inverters with constant modulation frequency. IEEE Trans Ind Appl 26(1):88–92CrossRefGoogle Scholar
  71. 71.
    Elliott CR (1999) Hysteresis current controller for a reluctance machine. US patent No. 5, 998, 945Google Scholar
  72. 72.
    Gallegos-Lopez G, Rajashekara K (2002) Peak PWM current control of switched reluctance and AC machines. In: Proceeding of the IEEE 37th IAS annual meeting conference record of the industrial applications society (IAS) Pittsburgh, 13-18 Oct 2002Google Scholar
  73. 73.
    Blaabjerg F, Kjaer PC, Rasmussen PO, Cossar C (1999) Improved digital current control methods in switched reluctance motor drives. IEEE Trans Power Electron 14(3):563–572CrossRefGoogle Scholar
  74. 74.
    Vazquez C, Lafoz M, Ugena D, Garcia-Tabares L (2007) Control system for the switched reluctance drive of a flywheel energy-storage module. Euro Trans Electr Power 17(6):537–553CrossRefGoogle Scholar
  75. 75.
    Lafoz M, Vazquez C, Iglesias JI (2009) DC railway catenary regulation based on KESS. In: Proceeding of the electrical energy storage applications and technologies (EESAT) Washington, 4–7 Oct 2009Google Scholar
  76. 76.
    Lafoz M, Vazquez C, Garcia-Tabares L (2008) Efficiency considerations of a kinetic energy storage system used for railway applications. In: Proceeding of the international conference on electrical machines (ICEM) Vilamoura, 6–9 Sept 2008Google Scholar
  77. 77.
    Takahashi R, Tamura J (2007) Frequency stabilization of small power system with wind farm by using flywheel energy storage system. In: Proceeding of the IEEE international symposium on diagnostics for electric machines, power electronics and drives (SDEMPED) Cracow, 6–8 Sept 2007 (IAS) Houston, 4–9 Oct 1992Google Scholar
  78. 78.
    Akamatsu M, Tsukada M, Itoh D (1998) A novel PLL and frequency detecting method suited for the abnormal voltages under fault conditions in the power system. IEEJ Trans Power Electron 118-B(9):955–961Google Scholar
  79. 79.
    Flynn MM, Mcmullen P, Solis O (2008) Saving energy using flywheels. IEEE Ind Appl Mag 14(6):69–76CrossRefGoogle Scholar
  80. 80.
    Beacon Power Corporation (2010) Smart energy matrix™ 20 MW frequency regulation plant (June 2010). Available via
  81. 81.
    Lazarewicz ML, Ryan T (2010) Grid-scale frequency regulation using flywheels. Available via
  82. 82.
    Cleary J, Lazarewicz ML, Nelson L, Rounds R, Arsenault J (2010) Interconnection study: 5 MW of Beacon Power flywheels on 23 kV line—Tyngsboro, MA. In: Proceeding of the IEEE conference on innovative technologies for an efficient and reliable electricity supply (CITRES), USA, 27–29 Sept 2010Google Scholar
  83. 83.
    Lazarewicz ML, Ryan TM (2010) Integration of flywheel-based energy storage for frequency regulation in deregulated markets. In: Proceeding of the IEEE power and energy society general meeting, USA, 25–29 July 2010Google Scholar
  84. 84.
    KEMA corporation (2007) Emissions comparison for a 20 MW flywheel-based frequency regulation power plant. Available via
  85. 85.
    Fay G, Schwörer T (2010) Alaska isolated wind-diesel systems: performance and economic analysis. Available via
  86. 86.
    Vrettos EI, Papathanassiou SA (2011) Operating policy and optimal sizing of a high penetration RES-BESS sytem for small isolated grids. IEEE Trans Energ Convers 26:744–756CrossRefGoogle Scholar
  87. 87.
    Abbey C, Joos G (2008) Sizing and power management strategies for battery storage integration into wind-diesel systems. In: Proceeding of the 34th annual conference of IEEE industrial electronics society (IECON), Orlando, 10–13 Nov 2008Google Scholar
  88. 88.
    Sebastian R, Peña R (2009) Simulation of a high penetration wind diesel system with a Ni-Cd battery energy storage. In: Proceeding of the 35th annual conference of IEEE industrial electronics society (IECON), Porto, 3–5 Nov 2009Google Scholar
  89. 89.
    Tankari MA, Camara MB, Dakyo B, Nichita C (2010) Attenuation of power fluctuations in wind diesel hybrid system—using ultracapacitors and batteries. In: Proceeding of the international conference on electrical machines and drives (ICEMD) Rome, 6–8 Sept 2010Google Scholar
  90. 90.
    Urasaki N, Iwasaki M (2010) Hybrid power source with electric double layer capacitor and battery in electric vehicle. In: Proceeding of the international conference on electrical machines and systems (ICEMS) Incheon, 10–13 Oct 2010Google Scholar
  91. 91.
    Nagaoka N, Miyamoto A, Ametani A (2004) New EDLC charging system for photovoltaic generation part 1: numerical simulation. In: Proceeding of the 39th international universities power engineering conference (UPEC), Bristol, 6–8 Sept 2004Google Scholar
  92. 92.
    Wildrick CM, Lee FC (1995) A method of defining the load impedance specification for a stable distributed power system. IEEE Trans Power Electron 10(3):280–285CrossRefGoogle Scholar
  93. 93.
    Liang Y, Hu Z, Chen Y (2003) A survey of distributed generation and its application in power system. Power Syst Technol 12:72–75Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Juan M. Carrasco
    • 1
  • Eduardo Galván
    • 1
  • Sergio Vázquez
    • 1
  • Luis García-Tabarés
    • 2
  • Marcos Lafoz
    • 2
  1. 1.Department of Electronics EngineeringUniversity of SevilleSevilleSpain
  2. 2.CIEMATMadridSpain

Personalised recommendations