Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1904 Accesses

Abstract

This chapter presents the notation, background and some preliminary results that are employed throughout the book. The mathematical model of the aerial vehicles considered in this work is given and some definitions from graph theory are used to model the information flow in multiple interconnected systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhat SP, Bernstein DS (2000) Topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst Control Lett 39(1):63–70

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaturvedi N, Sanyal A, McClamroch NH (2011) Rigid-body attitude control. IEEE Control Syst Mag 31(3):30–51

    Article  MathSciNet  Google Scholar 

  3. Diebel J (2006) Representing attitude: Euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University

    Google Scholar 

  4. Gu K, Kharitonov VL, Chen J (2003) Stability of time-delay systems. Birkhauser, Boston

    Book  MATH  Google Scholar 

  5. Igarashi Y, Hatanaka T, Fujita M, Spong MW (2009) Passivity-based attitude synchronization in SE(3). IEEE Trans Control Syst Technol 17(5):1119–1134

    Article  Google Scholar 

  6. Ioannou P, Sun J (1996) Robust adaptive control. Prentice Hall, New York

    MATH  Google Scholar 

  7. Jungnickel D (2005) Graphs. Networks and algorithms, vol 5. Springer, Berlin

    MATH  Google Scholar 

  8. Khalil H (2002) Nonlinear systems, 3rd edn. Prentice Hall, New York

    MATH  Google Scholar 

  9. Koditschek D (1988) Application of a new Lyapunov function to global adaptive attitude tracking. In: Proceedings of the 27th IEEE conference on decision and control, pp 63–68

    Chapter  Google Scholar 

  10. Krstić M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and adaptive control design. Adaptive and learning systems for signal processing, communications and control. Wiley, New York

    Google Scholar 

  11. Mahony R, Hamel T (2001) Adaptive compensation of aerodynamic effects during takeoff and landing manoeuvers for a scale model autonomous helicopter. Eur J Control 7:43–58

    Article  Google Scholar 

  12. Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles. Modeling, estimation, and control of quadrotor. IEEE Robot Autom Mag 19(3):20–32

    Article  Google Scholar 

  13. Pflimlin JM, Soures P, Hamel T (2007) Position control of a ducted fan VTOL UAV in crosswind. Int J Control 80(5):666–683

    Article  MATH  Google Scholar 

  14. Prouty RW (1995) Helicopter performance, stability and control. Krieger, Melbourne

    Google Scholar 

  15. Ren W, Beard RW (2008) Distributed consensus in multi-vehicle cooperative control. Communications and control engineering series. Springer, London

    MATH  Google Scholar 

  16. Roberts A (2007) Attitude estimation and control of a ducted fan VTOL UAV. Master’s thesis, Lakehead University

    Google Scholar 

  17. Roberts A, Tayebi A (2011) Adaptive position tracking of VTOL-UAVs. IEEE Trans Robot 27(1):129–142

    Article  Google Scholar 

  18. Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41(4):435–517

    Google Scholar 

  19. Slotine J-J, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  20. Stuelpnagel J (1964) On the parametrization of the three-dimensional rotation group. SIAM Rev 6(4):422–430

    Article  MathSciNet  MATH  Google Scholar 

  21. Tayebi A, McGilvray S (2006) Attitude stabilization of a quadrotor aircraft. IEEE Trans Control Syst Technol 14:562–571

    Article  Google Scholar 

  22. Wen JTY, Kreutz-Delgado K (1991) The attitude control problem. IEEE Trans Autom Control 36:1148–1162

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Abdessameud, A., Tayebi, A. (2013). Background and Preliminaries. In: Motion Coordination for VTOL Unmanned Aerial Vehicles. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5094-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5094-7_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5093-0

  • Online ISBN: 978-1-4471-5094-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics