Introduction

  • Qibo Mao
  • Stanislaw Pietrzko
Chapter

Abstract

The presence of structure-borne sound is a persistent problem in acoustics. Various noise control techniques, such as passive, active, or a combination of the two control techniques (hybrid), have been developed in different fields to reduce the noise. Among those techniques, the traditional passive noise reduction techniques are widely used in industries and commercial products. Passive control methods typically use absorptive materials or vibration absorbers to achieve noise reduction. They are proved to be very effective in the middle and high frequency ranges. However, in the low frequency range, passive noise control often makes noise elimination equipment very bulky and inefficient. For example, absorptive materials are not a practical means of attenuation at low frequencies because of the thickness requirement to absorb the large acoustic wavelengths. Similarly, damping materials typically are not effective in attenuating low-frequency vibrations and radiating sound. Thick and massive viscous materials are required, which again presents a practicality problem with implementing this traditional control technique to realistic applications. Efficient vibration and noise reduction approach in the low frequency range thus poses a challenging topic to noise control engineers.

Keywords

Zirconate Attenuation Titanate Fluoride Brittle 

References

  1. 1.
    Nelson PA, Elliott SJ (1992) Active control of sound. Academic, LondonGoogle Scholar
  2. 2.
    Fuller CR, Elliott SJ, Nelson PA (1997) Active control of vibration. Academic, LondonGoogle Scholar
  3. 3.
    Clark RL, Saunders WR, Gibbs GP (1998) Adaptive structures: dynamics and control. Wiley, New YorkGoogle Scholar
  4. 4.
    Hansen CH, Snyder SD (1997) Active control of noise and vibration. E&FN SPON, LondonGoogle Scholar
  5. 5.
    Preumont A (2002) Vibration control of active structures: an introduction, 2nd edn. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Lueg P (1936) Process of silencing sound oscillations. US Patent No. 2043416Google Scholar
  7. 7.
    Olson HF, May EG (1953) Electronic sound absorber. J Acoust Soc Am 25:1130–1136CrossRefGoogle Scholar
  8. 8.
    Fuller CR (1990) Active control of sound transmission/radiation from elastic plates by vibrational inputs. I. Analysis J Sound Vib 136(1):1–15CrossRefGoogle Scholar
  9. 9.
    Fuller CR, Hansen CH, Snyder SD (1991) Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs: an experimental comparison. J Sound Vib 145(2):195–215CrossRefGoogle Scholar
  10. 10.
    Wallace CE (1972) Radiation resistance of a rectangular panel. J Acoust Soc Am 51(3): 946–952CrossRefGoogle Scholar
  11. 11.
    Fahy F (1985) Sound and structural vibration/radiation, transmission and response. Academic, LondonGoogle Scholar
  12. 12.
    Qiu XJ, Sha JZ, Yang J (1995) Mechanisms of active control of noise transmission through a panel into a cavity using a point force actuator on the panel. J Sound Vib 182(1):167–170CrossRefGoogle Scholar
  13. 13.
    Borgiotti GV (1990) The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements. J Acoust Soc Am 88(4):1884–1893CrossRefGoogle Scholar
  14. 14.
    Photiais DM (1990) The relationships of singular value decomposition to wave-vector by three-dimensional structures. J Acoust Soc Am 88(4):1152–1159CrossRefGoogle Scholar
  15. 15.
    Elliott SJ, Johnson ME (1993) Radiation modes and the active control of sound power. J Acoust Soc Am 94(4):2194–2204CrossRefGoogle Scholar
  16. 16.
    Cunfare KA (1994) On the exterior acoustic radiation modes of structure. J Acoust Soc Am 96(4):2302–2312CrossRefGoogle Scholar
  17. 17.
    Naghshineh K, Koopmann GH (1994) An active control strategy for achieving weak radiator structures. ASME Trans J Vib Acoust 116:31–37CrossRefGoogle Scholar
  18. 18.
    Naghshineh K, Koopmann GH (1993) Active control of sound power using acoustic basis functions as surface velocity filters. J Acoust Soc Am 93(5):2740–2752CrossRefGoogle Scholar
  19. 19.
    Naghshineh K, Koopmann GH (1992) A design method for achieving weak radiator structures using active vibration control. J Acoust Soc Am 92(2):856–871CrossRefGoogle Scholar
  20. 20.
    Johnson ME, Elliott SJ (1995) Active control of sound radiation using volume velocity cancellation. J Acoust Soc Am 98(4):2174–2186CrossRefGoogle Scholar
  21. 21.
    Lee CK, Moon FC (1990) Modal sensors/actuator. ASME Trans J Appl Mech 57:434–441CrossRefGoogle Scholar
  22. 22.
    Guigou C, Berry A, Charette E, Nicolas F (1996) Active control of finite beam volume velocity using shaped PVDF sensors. Acta Acust United Acust 82(5):772–783MATHGoogle Scholar
  23. 23.
    Snyder SD, Tanaka N, Kikushima Y (1995) The use of optimally shaped piezo-electric film sensors in the active control of free field structural radiation, Part 1: Feedforward control. ASME Trans J Vib Acoust 117:311–322CrossRefGoogle Scholar
  24. 24.
    Cazzolato BS, Hansen CH (1999) Structural radiation mode sensing for active control of sound radiation into enclosed spaces. J Acoust Soc Am 106(6):3732–3735CrossRefGoogle Scholar
  25. 25.
    Marcellin BZ, Naghshineh K, Kamman JW (2001) Narrow band active control of sound radiated from a baffled beam using local volume displacement minimization. Appl Acoust 62:47–64CrossRefGoogle Scholar
  26. 26.
    Marcellin BZ, Kamman JW, Naghshineh K (2001) Theoretical development and experimental validation of local volume displacement sensors for a vibrating beam. ASME Trans J Vib Acoust 123:110–118CrossRefGoogle Scholar
  27. 27.
    Zahui M, Wendt R (2004) Development of local volume displacement sensors for vibrating plates. J Acoust Soc Am 116(4):2111–2117CrossRefGoogle Scholar
  28. 28.
    Randall R, Brian Z, Koorosh N, Marcellin Z (2004) Development of a PVDF sensor for the measurement of the acoustic local volume displacement of vibrating beams. ASME Trans J Vib Acoust 126:352–358CrossRefGoogle Scholar
  29. 29.
    Charette F, Berry A, Guigou C (1998) Active control of sound radiation from a plate using a polyvinylidence fluoride volume displacement sensor. J Acoust Soc Am 103(3):1493–1503CrossRefGoogle Scholar
  30. 30.
    Preumont A, Francois A, Dubru S (1999) Piezoelectric array sensing for real-time, broad-band sound radiation measurement. J Vib Acoust 121:446–452CrossRefGoogle Scholar
  31. 31.
    Francois A, de Man P, Preumont A (2001) Piezoelectric array sensing of volume displacement: a hardware demonstration. J Sound Vib 244(3):395–405CrossRefGoogle Scholar
  32. 32.
    Berkhoff AP (2001) Piezoelectric sensor configuration for active structural acoustic control. J Sound Vib 246(1):175–183CrossRefGoogle Scholar
  33. 33.
    Mao Q, Xu B, Jiang Z, Gu J (2003) A piezoelectric array for sensing radiation modes. Appl Acoust 64:669–680CrossRefGoogle Scholar
  34. 34.
    Gibbs GP, Clark RL, Cox DE (2000) Radiation modal expansion: application to active structural acoustic control. J Acoust Soc Am 107(1):332–339CrossRefGoogle Scholar
  35. 35.
    Gardonio P, Lee YS, Elliott SJ (2001) Analysis and measurement of a matched volume velocity sensor and uniform force actuator for active structural acoustic control. J Acoust Soc Am 110(6):3025–3031CrossRefGoogle Scholar
  36. 36.
    Henrioulle H, Sas P (2003) Experimental validation of a collocated PVDF volume velocity sensor/actuator pair. J Sound Vib 265:489–506CrossRefGoogle Scholar
  37. 37.
    Crawley EF, Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25(10):1373–1385CrossRefGoogle Scholar
  38. 38.
    Hagood NW, Chung WH, Flotow A (1990) Modelling of piezoelectric actuator dynamics for active structural control. J Intell Mater Syst Struct 1(3):327–354CrossRefGoogle Scholar
  39. 39.
    Dosch JJ, Inman DJ, Garcia E (1992) A self-sensing piezoelectric actuator for collocated control. J Intell Mater Syst Struct 3:166–185CrossRefGoogle Scholar
  40. 40.
    Elliott SJ (2005) Distributed control of sound and vibration. Noise Control Eng J 53(5): 165–180CrossRefGoogle Scholar
  41. 41.
    Fahy FJ, Schofield C (1980) A note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure. J Sound Vib 72:365–378CrossRefMATHGoogle Scholar
  42. 42.
    Esteve SJ, Johnson ME (2002) Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators. J Acoust Soc Am 112: 2840–2848CrossRefGoogle Scholar
  43. 43.
    Mao Q, Pietrzko S (2005) Control of sound transmission through double wall partitions using optimally tuned Helmholtz resonators. Acta Acust United Acust 91:723–731Google Scholar
  44. 44.
    Bedout JM, Franchek MA, Bernard RJ, Mongeau L (1997) Adaptive-passive noise control with self-tuning resonators. J Sound Vib 202:109–123CrossRefGoogle Scholar
  45. 45.
    Esteve SJ, Johnson ME (2004). Development of an adaptive Helmholtz resonator for broadband noise control. In: Proceedings of IMECE2004, Anaheim, CA, USAGoogle Scholar
  46. 46.
    Nagaya K, Hano Y, Suda A (2001) Silencer consisting of two-stage Helmholtz resonator with auto-tuning control. J Acoust Soc Am 110:289–295CrossRefGoogle Scholar
  47. 47.
    Esteve SJ, Johnson ME (2005) Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control. J Sound Vib 288:1105–1130CrossRefGoogle Scholar
  48. 48.
    Hagood NW, Flotow A (1991) Damping of structural vibration with piezoelectric materials and passive electrical networks. J Sound Vib 146:243–268CrossRefGoogle Scholar
  49. 49.
    Niederberger D, Fleming A, Moheimani SOR, Morari M (2004) Adaptive multi-mode resonant piezoelectric shunt damping. Smart Mater Struct 13:1025–1035CrossRefGoogle Scholar
  50. 50.
    Niederberger D, Morari M, Pietrzko S (2003) Adaptive resonant shunted piezoelectric devices for vibration suppression. Proc SPIE Smart Struct Mater Conf 5056:213–223Google Scholar
  51. 51.
    Niederberger D, Pietrzko S, Morari M (2004) Noise control in a duct with online-tuned shunted piezoelectric materials. Proc SPIE Smart Struct Mater Conf 5386:405–413Google Scholar
  52. 52.
    Fleming AJ, Moheimani SOR (2003) Adaptive piezoelectric shunt damping. Smart Mater Struct 12:36–48CrossRefGoogle Scholar
  53. 53.
    Clark WW (2000) Vibration control with state-switching piezoelectric materials. J Intell Mater Syst Struct 11:263–271Google Scholar
  54. 54.
    Lawrence RC, Clark WW (2002) Comparison of low-frequency piezoelectric switching shunt techniques for structures damping. Smart Mater Struct 11:370–376CrossRefGoogle Scholar
  55. 55.
    Lawrence RC, Clark WW (2003) A novel semi-active multi-modal vibration control law for a piezoceramic actuator. ASME Trans J Vib Acoust 125:214–222CrossRefGoogle Scholar
  56. 56.
    Gawronski WK (2004) Advanced structural dynamics and active control of structures. Springer, New YorkCrossRefGoogle Scholar
  57. 57.
    Pietrzko S (2010) Contributions to noise and vibration control technology. AGH/ITEE, Krakw/Radom, ISBN: 978-83-7204-786-1Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Qibo Mao
    • 1
  • Stanislaw Pietrzko
    • 2
  1. 1.School of Aircraft EngineeringNanchang HangKong UniversityNanchangChina, People’s Republic
  2. 2.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland

Personalised recommendations