Skip to main content

Linear Feedback Shift Registers

  • Chapter

Abstract

Linear Feedback Shift Registers (LFSRs) have nice statistical properties and a well developed theory. They are also cheap and fast. This makes them attractive as basis for ciphers. In this chapter we will review the part of the theory we will need. A focus lies on the algorithmic parts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    f (z) is sometimes called the feedback polynomial. As the literature has not adopted a unique notation, it is important to check which notation is being used.

References

  1. Baumert, L.D.: Cyclic Difference Sets. LNM, vol. 182. Springer, Berlin (1971)

    MATH  Google Scholar 

  2. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casti, J.L.: Dynamical Systems and Their Applications: Linear Theory. Academic Press, San Diego (1977)

    MATH  Google Scholar 

  5. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: Santis, A.D. (ed.) Advances in Cryptology EUROCRYPT 94. LNCS, vol. 950, pp. 356–365. Springer, New York (1995)

    Chapter  Google Scholar 

  6. Cheng, U., Golomb, S.W.: On the characterisation of PN sequences. IEEE Trans. Inf. Theory 29, 600 (1983)

    Article  Google Scholar 

  7. Dai, Z.d.: Proof of Rueppel’s linear complexity conjecture. IEEE Trans. Inf. Theory 32, 440–443 (1986)

    Article  MATH  Google Scholar 

  8. Gold, R.: Maximal recursive sequences with 3-valued cross-correlation functions. IEEE Trans. Inf. Theory 14, 154–156 (1968)

    Article  MATH  Google Scholar 

  9. Golomb, S.W.: On the classification of balanced binary sequences of period 2n−1. IEEE Trans. Inf. Theory 26, 730–732 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golomb, S.W.: Shift Register Sequences. Aegean Park, Laguna Hills, revised edition (1982)

    Google Scholar 

  11. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  12. Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1765–1853. Elsevier, Amsterdam (1998). Chap. 21

    Google Scholar 

  13. Kailath, T., Sayed, A.H.: Displacement structure: theory and applications. SIAM Rev. 35, 297–386 (1995)

    Article  MathSciNet  Google Scholar 

  14. Kasami, T.: Weight distribution formula for some class of cyclic codes. Technical Report R-285, Coordinated Science Laboratory, University of Illinois, Urbana, April 1966

    Google Scholar 

  15. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  16. Massey, J.L.: Shift-register synthesis and BCH-decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Desmedt, Y. (ed.) Advances in Cryptology, Eurocrypt ’93. LNCS, vol. 839, pp. 1–11. Springer, Berlin (1994)

    Google Scholar 

  18. McGuire, G., Calerbank, A.R.: Proof of a conjecture of Sarwarte and Pursley regarding pairs of binary m-sequences. IEEE Trans. Inf. Theory 41, 1153–1155 (1995)

    Article  MATH  Google Scholar 

  19. Meidel, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complex. 18, 87–103 (2002)

    Article  Google Scholar 

  20. Niederreiter, H.: Sequences with almost perfect linear complexity profile. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology, Eurocrypt ’87. LNCS, vol. 304, pp. 37–51. Springer, Berlin (1988)

    Chapter  Google Scholar 

  21. Niederreiter, H.: Keystream sequncence with a good linear complexity profile for every starting point. In: Advances in Cryptology—Eurocrypt ’89. Lecture Notes in Computer Science, vol. 434, pp. 523–532 (1990)

    Google Scholar 

  22. Perron, O.: In: Die Lehre von den Kettenbrüchen. Elementare Kettenbrüche. Band 1. 3 Auflage. Teubner, Stuttgart (1954)

    Google Scholar 

  23. Rueppel, R.A.: Analysis and Design of Stream Chiphers. Springer, Berlin (1986)

    Book  Google Scholar 

  24. Shoup, V.: NTL: A library for doing number theory. http://www.shoup.net/ntl/

  25. St Denis, T.: Cryptography for Developers. Syngress (2007)

    Google Scholar 

  26. Wang, M.Z., Massey, J.L.: The characterisation of all binary sequences with a perfect linear complexity profile. Paper presented at the Eurocrypt ’86 (1986)

    Google Scholar 

  27. Warren, H.S. Jr.: Hacker’s Delight. Addison-Wesley, Boston (2003). Revisions and additional material are on the homepage of the book. http://www.hackersdelight.org/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Klein, A. (2013). Linear Feedback Shift Registers. In: Stream Ciphers. Springer, London. https://doi.org/10.1007/978-1-4471-5079-4_2

Download citation

Publish with us

Policies and ethics