Skip to main content

Experimental Case Studies

  • Chapter
Optimal Control of Hybrid Vehicles

Part of the book series: Advances in Industrial Control ((AIC))

  • 2869 Accesses

Abstract

This chapter illustrates, with the help of two case studies, both involving design, implementation and experimental validation, the design process for energy management strategies. The first case is for a micro hybrid vehicle. Here, another method to numerically solve the optimization problem is introduced, namely Quadratic Programming, to handle the multiple decision variables used in the problem set-up for this case. The optimal solution for the powersplit is embedded in a Model Predictive Control frame work. The numerical solution allows a comparison between an optimal numerical strategy and a real-time strategy, as implemented in the vehicle. The implementation uses computing facilities that go beyond the standard ones in one of the vehicle’s computational units. The second case study is for a heavy-duty freight vehicle, namely a delivery truck. The implementation in this case uses a standard computational unit of the vehicle, which is possible by using a map-based approach. The experimental results show that the implementation of the optimal strategy is feasible and that this strategy achieves a better fuel economy than the built-in rule-based strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section re-uses material presented in Kessels et al. (2007).

  2. 2.

    This section re-uses material from Van Keulen et al. (2012).

References

  • Allen RW, Rosenthal TJ, Hogue JR (1996) Modeling and simulation of driver/vehicle interaction. In: SAE internat. congress & exposition, Detroit, MI, USA. SAE paper 960177

    Google Scholar 

  • Ã…sbogÃ¥rd M, Edström F, Bringhed J, Larsson M, Hellgren J (2004) Evaluating potential of vehicle auxiliary system coordination using optimal control. In: Proc internat symp advanced veh control, Arnhem, The Netherlands

    Google Scholar 

  • Back M, Simons M, Kirschaum F, Krebs V (2002) Predictive control of drivetrains. In: Proc 15th IFAC World Congress, Barcelona, Spain

    Google Scholar 

  • Van den Bosch PPJ, Lootsma FA (1987) Scheduling of power generation via large-scale nonlinear optimization. J Optim Theory Appl 55:313–326

    Article  MathSciNet  MATH  Google Scholar 

  • Buller S, Thele M, Karden E, de Doncker RW (2003) Impedance-based non-linear dynamic battery modeling for automotive applications. J Power Sources 113(2):422–430

    Article  Google Scholar 

  • Camacho EF, Bordons C (2004) Model predictive control, 2nd edn. Springer, London

    MATH  Google Scholar 

  • De Jager B (2003) Predictive storage control for a class of power conversion systems. In: Proc European control conf, Cambridge, UK, pp 1–6

    Google Scholar 

  • De Jager B (2004) The horizon in predictive energy storage control. In: Proc American control conf, Boston, MA, USA, pp 186–187

    Google Scholar 

  • Kessels J, Koot M, Hendrix W, Ellenbroek R, Heemels M, Pesgens M, Steinbuch M, Van den Bosch P (2004) Vehicle modeling for energy management strategies. In: Proc internat symp advanced veh control, Arnhem, The Netherlands

    Google Scholar 

  • Kessels JTBA, Koot M, De Jager B, Van den Bosch PPJ (2005) Energy management for vehicle power net with flexible electric load demand. In: Proc IEEE conf control appl. IEEE, Toronto, pp 1504–1509

    Google Scholar 

  • Kessels JTBA, Koot M, De Jager B, Van den Bosch PPJ, Aneke NEPI, Kok DB (2007) Energy management for the electrical powernet in vehicles with a conventional drivetrain. IEEE Trans Control Syst Technol 15(3):494–505

    Article  Google Scholar 

  • Van Keulen T, De Jager B, Kessels JTBA, Steinbuch M (2012) Design, implementation, and evaluation of optimal power split control in hybrid vehicles. Control Eng Pract 20:547–558

    Article  Google Scholar 

  • Koot M, Kessels JTBA, De Jager B, Heemels WPMH, Van den Bosch PPJ, Steinbuch M (2005) Energy management strategies for vehicular electric power systems. IEEE Trans Veh Technol 54(3):771–782

    Article  Google Scholar 

  • Koot M, Kessels J, De Jager B, Van den Bosch P (2006) Fuel reduction potential of energy management for vehicular electric power systems. Int J Alternative Prop 1(1):112–131

    Article  Google Scholar 

  • Tate ED, Boyd SP (2000) Finding ultimate limits of performance for hybrid electric vehicles. In: Hybrid electric vehicles (SP-1560), Costa Mesa, CA, SAE paper 2000-01-3099

    Google Scholar 

  • West MJ, Bingham CM, Schofield N (2003) Predictive control for energy management in all/more electric vehicles with multiple energy storage units. In: Proc IEEE internat electric machines and drives conf, vol 1. IEEE, New York, pp 222–228

    Google Scholar 

  • Wipke KB, Cuddy MR, Burch SD (1999) ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans Veh Technol 48(6):1751–1761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

de Jager, B., van Keulen, T., Kessels, J. (2013). Experimental Case Studies. In: Optimal Control of Hybrid Vehicles. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5076-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5076-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5075-6

  • Online ISBN: 978-1-4471-5076-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics